Can Lignin Wastes Originating From Cellulosic Ethanol Biorefineries Act as Radical Scavenging Agents?
Caroline Vanderghem A , Nicolas Jacquet A and Aurore Richel A BA Unit of Biological and Industrial Chemistry, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
B Corresponding author. Email: a.richel@ulg.ac.be
Australian Journal of Chemistry 67(11) 1693-1699 https://doi.org/10.1071/CH14074
Submitted: 15 February 2014 Accepted: 13 March 2014 Published: 8 May 2014
Abstract
Lignin is a co-product from the biorefinery and paper industries. Its non-energetic valorisation remains a field of extensive research and development. In this perspective, this study was undertaken to evaluate the radical scavenging ability of selected herbaceous lignins. These lignins, extracted from either Miscanthus (Miscanthus × giganteus) or switchgrass (Panicum virgatum L.), were selected as benchmarks for this study based on their chemical structure and average molecular weight. These technical lignins, which are side-products in the bioethanol production process, displayed a moderate antioxidant activity as evaluated by the 1,1-diphenyl-2-picrylhydrazil free radical scavenging test system. A correlation between the radical scavenging properties and the molecular features is proposed and discussed. Infrared spectroscopy was employed as a straightforward qualitative prediction tool for assessing the radical scavenging capacity.
References
[1] P. Laurent, J. Rois, J. L. Wertz, A. Richel, M. Paquot, Biotechnol. Agron. Soc. Environ. 2011, 15, 597.[2] P. Sannigrahi, Y. Pu, A. Ragauskas, Curr. Opin. Environ. Sustain. 2010, 2, 383.
| Crossref | GoogleScholarGoogle Scholar |
[3] O. Rochez, G. Zorzini, J. Amadou, M. Claes, A. Richel, J. Mater. Sci. 2013, 48, 4962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1Cjsr8%3D&md5=eced4915d7d9ed9c1a01c252c35274dfCAS |
[4] C. Pouteau, P. Dole, B. Cathala, L. Averous, N. Boquillon, Polym. Degrad. Stabil. 2003, 81, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCmtbw%3D&md5=63af514624ea5286873d6426ec547b04CAS |
[5] M. Han, G. W. Choi, Y. Kim, B. Koo, Bioresources 2011, 6, 1939.
| 1:CAS:528:DC%2BC3MXls1Klsbo%3D&md5=84d45fcdea1d1356e47c61ff400fe5beCAS |
[6] D. R. Keshwani, J. J. Cheng, Bioresource Technol. 2009, 100, 1515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhs7zL&md5=6dc8cf3e6e950a202e8c1e7b758df40bCAS |
[7] P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve, Ind. Eng. Chem. Res. 2009, 48, 3713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFegtbg%3D&md5=894c0a06ffe7a26055a21f172cf22395CAS |
[8] T. Eggeman, R. T. Elander, Bioresource Technol. 2005, 96, 2019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Wgu7Y%3D&md5=df858f1468942a1f13d394ca44921843CAS |
[9] M. Simon, C. Vanderghem, Y. Brostaux, B. Jourez, M. Paquot, A. Richel, J. Chem. Technol. Biotechnol. 2013, in press.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. B. H. Finch, R. M. Richards, A. Richel, A. V. Medvedovici, N. G. Gheorghe, M. Verziu, S. M. Coman, V. I. Parvulescu, Catal. Today 2012, 196, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1yls7Y%3D&md5=159e9fb21faef4851beda559067f410cCAS |
[11] P. Manara, A. Zabaniotou, C. Vanderghem, A. Richel, Catal. Today 2014, 223, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhsbnO&md5=c8cabc6d4a12844b82b02041224feab4CAS |
[12] C. Vanderghem, A. Richel, N. Jacquet, C. Blecker, M. Paquot, Polym. Degrad. Stabil. 2011, 96, 1761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFakurbE&md5=11929da3a37d781a7df39f667e7825d8CAS |
[13] A. B. Blakeney, P. J. Harris, R. J. Henry, B. A. Stone, Carbohydr. Res. 1983, 113, 291.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsl2kurc%3D&md5=7fa3e3dbb1e0fd78a28a19f0a76a5862CAS |
[14] D. Amendola, D. M. De Faveri, G. Spigno, J. Food Eng. 2010, 97, 384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls12kt7Y%3D&md5=0d8943b5cc75b1252900c07c03140669CAS |
[15] A. L. Waterhouse, Curr. Protoc. Food Anal. Chem. 2002, I1.1.1.
[16] C. Sánchez-Moreno, J. A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric. 1998, 76, 270.
| Crossref | GoogleScholarGoogle Scholar |
[17] T. Dizhbite, G. Telysheva, V. Jurkane, U. Viesturs, Bioresource Technol. 2004, 95, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Khurw%3D&md5=6b6f17b2734e9c42b3cddc572b0cad6fCAS |
[18] R. Bhat, H. P. S. A. Khalil, A. A. Karim, C. R. Biol. 2009, 332, 827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqtLnF&md5=c8ddfb8487b0c2780dfa2d239ca9f73dCAS | 19748457PubMed |
[19] I. Parejo, F. Viladomat, J. Bastida, A. Rosas-Romero, N. Flerlage, J. Burillo, C. Codina, J. Agric. Food Chem. 2002, 50, 6882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1yku7Y%3D&md5=94a71fb016cda4bf9ba272c069dd259bCAS | 12405792PubMed |
[20] A. García, A. Toledano, M. A. Andrés, J. Labidi, Process Biochem. 2010, 45, 935.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. G. Boeriu, D. Bravo, R. J. A. Gosselink, J. E. G. van Dam, Ind. Crops Prod. 2004, 20, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFCnur4%3D&md5=98b090bf385068bb2fa52808e3ba7396CAS |
[22] X. J. Pan, K. Ehara, J. Kadla, N. Gilkes, J. Saddler, J. Agric. Food Chem. 2006, 54, 5806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFCmtr8%3D&md5=95149c6943b84537aa030d0cdaefddafCAS |