Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Can Lignin Wastes Originating From Cellulosic Ethanol Biorefineries Act as Radical Scavenging Agents?

Caroline Vanderghem A , Nicolas Jacquet A and Aurore Richel A B
+ Author Affiliations
- Author Affiliations

A Unit of Biological and Industrial Chemistry, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.

B Corresponding author. Email: a.richel@ulg.ac.be

Australian Journal of Chemistry 67(11) 1693-1699 https://doi.org/10.1071/CH14074
Submitted: 15 February 2014  Accepted: 13 March 2014   Published: 8 May 2014

Abstract

Lignin is a co-product from the biorefinery and paper industries. Its non-energetic valorisation remains a field of extensive research and development. In this perspective, this study was undertaken to evaluate the radical scavenging ability of selected herbaceous lignins. These lignins, extracted from either Miscanthus (Miscanthus × giganteus) or switchgrass (Panicum virgatum L.), were selected as benchmarks for this study based on their chemical structure and average molecular weight. These technical lignins, which are side-products in the bioethanol production process, displayed a moderate antioxidant activity as evaluated by the 1,1-diphenyl-2-picrylhydrazil free radical scavenging test system. A correlation between the radical scavenging properties and the molecular features is proposed and discussed. Infrared spectroscopy was employed as a straightforward qualitative prediction tool for assessing the radical scavenging capacity.


References

[1]  P. Laurent, J. Rois, J. L. Wertz, A. Richel, M. Paquot, Biotechnol. Agron. Soc. Environ. 2011, 15, 597.

[2]  P. Sannigrahi, Y. Pu, A. Ragauskas, Curr. Opin. Environ. Sustain. 2010, 2, 383.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  O. Rochez, G. Zorzini, J. Amadou, M. Claes, A. Richel, J. Mater. Sci. 2013, 48, 4962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1Cjsr8%3D&md5=eced4915d7d9ed9c1a01c252c35274dfCAS |

[4]  C. Pouteau, P. Dole, B. Cathala, L. Averous, N. Boquillon, Polym. Degrad. Stabil. 2003, 81, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCmtbw%3D&md5=63af514624ea5286873d6426ec547b04CAS |

[5]  M. Han, G. W. Choi, Y. Kim, B. Koo, Bioresources 2011, 6, 1939.
         | 1:CAS:528:DC%2BC3MXls1Klsbo%3D&md5=84d45fcdea1d1356e47c61ff400fe5beCAS |

[6]  D. R. Keshwani, J. J. Cheng, Bioresource Technol. 2009, 100, 1515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhs7zL&md5=6dc8cf3e6e950a202e8c1e7b758df40bCAS |

[7]  P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve, Ind. Eng. Chem. Res. 2009, 48, 3713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFegtbg%3D&md5=894c0a06ffe7a26055a21f172cf22395CAS |

[8]  T. Eggeman, R. T. Elander, Bioresource Technol. 2005, 96, 2019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Wgu7Y%3D&md5=df858f1468942a1f13d394ca44921843CAS |

[9]  M. Simon, C. Vanderghem, Y. Brostaux, B. Jourez, M. Paquot, A. Richel, J. Chem. Technol. Biotechnol. 2013, in press.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. B. H. Finch, R. M. Richards, A. Richel, A. V. Medvedovici, N. G. Gheorghe, M. Verziu, S. M. Coman, V. I. Parvulescu, Catal. Today 2012, 196, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1yls7Y%3D&md5=159e9fb21faef4851beda559067f410cCAS |

[11]  P. Manara, A. Zabaniotou, C. Vanderghem, A. Richel, Catal. Today 2014, 223, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOhsbnO&md5=c8cabc6d4a12844b82b02041224feab4CAS |

[12]  C. Vanderghem, A. Richel, N. Jacquet, C. Blecker, M. Paquot, Polym. Degrad. Stabil. 2011, 96, 1761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFakurbE&md5=11929da3a37d781a7df39f667e7825d8CAS |

[13]  A. B. Blakeney, P. J. Harris, R. J. Henry, B. A. Stone, Carbohydr. Res. 1983, 113, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsl2kurc%3D&md5=7fa3e3dbb1e0fd78a28a19f0a76a5862CAS |

[14]  D. Amendola, D. M. De Faveri, G. Spigno, J. Food Eng. 2010, 97, 384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls12kt7Y%3D&md5=0d8943b5cc75b1252900c07c03140669CAS |

[15]  A. L. Waterhouse, Curr. Protoc. Food Anal. Chem. 2002, I1.1.1.

[16]  C. Sánchez-Moreno, J. A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric. 1998, 76, 270.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  T. Dizhbite, G. Telysheva, V. Jurkane, U. Viesturs, Bioresource Technol. 2004, 95, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Khurw%3D&md5=6b6f17b2734e9c42b3cddc572b0cad6fCAS |

[18]  R. Bhat, H. P. S. A. Khalil, A. A. Karim, C. R. Biol. 2009, 332, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqtLnF&md5=c8ddfb8487b0c2780dfa2d239ca9f73dCAS | 19748457PubMed |

[19]  I. Parejo, F. Viladomat, J. Bastida, A. Rosas-Romero, N. Flerlage, J. Burillo, C. Codina, J. Agric. Food Chem. 2002, 50, 6882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1yku7Y%3D&md5=94a71fb016cda4bf9ba272c069dd259bCAS | 12405792PubMed |

[20]  A. García, A. Toledano, M. A. Andrés, J. Labidi, Process Biochem. 2010, 45, 935.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. G. Boeriu, D. Bravo, R. J. A. Gosselink, J. E. G. van Dam, Ind. Crops Prod. 2004, 20, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFCnur4%3D&md5=98b090bf385068bb2fa52808e3ba7396CAS |

[22]  X. J. Pan, K. Ehara, J. Kadla, N. Gilkes, J. Saddler, J. Agric. Food Chem. 2006, 54, 5806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFCmtr8%3D&md5=95149c6943b84537aa030d0cdaefddafCAS |