Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Series of Enthalpy/Entropy-Driven Reversible Dissolution/Reorganization Equilibriums in the System of Cu(NO3)2–HL–GdX3–H2O (HL = 5-methylpyrazine-2-carboxylic acid; X = Cl, Br, NO3, ClO4)

Sheng Zhang A , Qi Yang A , Xiangyu Liu A , Gang Xie A , Qing Wei A , Sanping Chen A B and Shengli Gao A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China.

B Corresponding author. Email: sanpingchen@126.com

Australian Journal of Chemistry 67(11) 1679-1687 https://doi.org/10.1071/CH13675
Submitted: 10 December 2013  Accepted: 17 March 2014   Published: 15 April 2014

Abstract

Five coordination polymers, [Cu(L)2]n (1), {[Cu(L)(Cl)(H2O)]·H2O}2n (2), [KCu(L)(μ-Cl)2]n (3), [Cu(L)(Br)H2O]n (4), and {[Cu0.5(HL)(H2O)](NO3)·H2O}2n (5) (HL = 5-methylpyrazine-2-carboxylic acid) were obtained by reactions of a pyramidal CuII-containing ligand, {[Cu(L)2(H2O)]·3H2O}n (LCu), with Gd(ClO4)3·6H2O, GdCl3·6H2O, GdCl3·6H2O/KCl, GdBr3·6H2O, or Gd(NO3)3·6H2O in water. Structural analysis reveals that the structures of these compounds range from a 0D block to a 2D network with modification of the environment of the CuII ions compared with LCu. Interestingly, there occurred a series of reversible dissolution/reorganization equilibriums between the initial reactants and the final products 15, which were determined as enthalpy/entropy driven chemical equilibriums by single crystal X-ray diffraction and microcalorimetry. In addition, the thermal stability of 1–4 and the magnetic property of 2 are discussed.


References

[1]  (a) O. Shekhah, J. Liu, R. A. Fischer, C. Wöll, Chem. Soc. Rev. 2011, 40, 1081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFSrsw%3D%3D&md5=e18ae5053414cb22b3c2a8104b314fd0CAS | 21225034PubMed |
      (b) G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolak, Science 2005, 309, 2040.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Xuan, C. Zhu, Y. Liu, Y. Cui, Chem. Soc. Rev. 2012, 41, 1677.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtr7L&md5=6f196ec2df42b67ed0fd057a9d715fd1CAS | 21916513PubMed |
      (b) H. Wu, J. Yang, Z. M. Su, S. R. Batten, J. F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. F. Eubank, L. Wojtas, M. R. Hight, T. Bousquet, V. C. Kravtsov, M. Eddaoudi, J. Am. Chem. Soc. 2011, 133, 17532.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Yang, J. F. Ma, S. R. Batten, Chem. Commun. 2012, 48, 7899.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) J. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OnsbbL&md5=e8575aad0ab7c15d014830b954265da4CAS | 21978134PubMed |
      (b) J. L. Wang, C. Wang, W. Lin, Catalysis 2012, 2, 2630.
      (c) W. Guo, L. Q. Han, Y. M. Guo, Aust. J. Chem. 2013, 66, 539.
      (d) P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Yoon, K. Suh, S. Natarajan, K. Kim, Angew. Chem. Int. Ed. 2013, 52, 2688.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) C. Hu, U. Englert, Angew. Chem. Int. Ed. 2005, 44, 2281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslWqsro%3D&md5=c63ee4fc857506f51f19036dd3e073c0CAS |
      (b) J. P. Ma, Y. B. Dong, R. Q. Huang, M. D. Smith, C. Y. Su, Inorg. Chem. 2005, 44, 6143.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. P. Zhang, Y. Y. Lin, W. X. Zhang, X. M. Chen, J. Am. Chem. Soc. 2005, 127, 14162.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. M. Legrand, A. van der Lee, N. Masquelez, P. Rabu, M. Barboiu, Inorg. Chem. 2007, 46, 9083.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K. Takaoka, M. Kawano, M. Tominaga, M. Fujita, Angew. Chem. Int. Ed. 2005, 44, 2151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1CqurY%3D&md5=9c6a7b0c2d17f533774dc742e069aed4CAS |
      (b) O. Ohmori, M. Kawano, M. Fujita, J. Am. Chem. Soc. 2004, 126, 16292.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. D. Wu, W. Lin, Angew. Chem. Int. Ed. 2005, 44, 1958.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Nihei, L. Han, H. Oshio, J. Am. Chem. Soc. 2007, 129, 5312.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Cheansirisomboon, C. Pakawatchai, S. Youngme, Aust. J. Chem. 2013, 66, 477.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) M. Nagarathinam, J. J. Vittal, Angew. Chem. Int. Ed. 2006, 45, 4337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsV2ju7Y%3D&md5=287bf57f0d7758f85d0503d93d3f0cf0CAS |
      (b) E. Ruíz-Agudo, S. Galli, J. A. R. Navarro, Inorg. Chim. Acta 2007, 360, 84.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. K. Sah, T. Tanase, Chem. Commun. 2005, 5980.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Hu, U. Englert, Angew. Chem. Int. Ed. 2006, 45, 3457.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. D. Ranford, J. J. Vittal, D. Wu, Angew. Chem. Int. Ed. 1998, 37, 1114.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. D. Ranford, J. J. Vittal, D. Wu, X. Yang, Angew. Chem. Int. Ed. 1999, 38, 3498.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) V. Niel, A. L. Thompson, M. C. Muoz, A. Galet, A. E. Goeta, J. A. Real, Angew. Chem. Int. Ed. 2003, 42, 3760.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) B. Rather, M. J. Zaworotko, Chem. Commun. 2003, 830.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) W. Kaneko, M. Ohba, S. Kitagawa, J. Am. Chem. Soc. 2007, 129, 13706.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) X. N. Cheng, W. X. Zhang, X. M. Chen, J. Am. Chem. Soc. 2007, 129, 157389.
      (k) D. X. Xue, W. X. Zhang, X. M. Chen, H. Z. Wang, Chem. Commun. 2008, 1551.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) J. Ye, Y. Liu, Y. Zhao, X. Mu, P. Zhang, Y. Wang, CrystEngComm 2008, 10, 598.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlvVCjsA%3D%3D&md5=d6271322c009f44512e1a8cebd8eac85CAS |
      (b) M. Hasegawa, Chem. Rev. 1983, 83, 507.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Matsumoto, H. Nakazawa, Macromolecules 2004, 37, 8538.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Nagahama, T. Tanaka, A. Matsumoto, Angew. Chem. Int. Ed. 2004, 43, 3811.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Matsumoto, K. Sada, K. Tashiro, M. Miyata, T. Tsubouchi, T. Tanaka, T. Odani, S. Nagahama, T. Tanaka, K. Inoue, S. Saragai, S. Nakamoto, Angew. Chem. Int. Ed. 2002, 41, 2502.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Matsumoto, T. Odani, M. Chikada, K. Sada, M. Miyata, J. Am. Chem. Soc. 1999, 121, 11122.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) X. Ouyang, F. W. Fowler, J. W. Lauher, J. Am. Chem. Soc. 2003, 125, 12400.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) T. Hoang, J. W. Lauher, F. W. Fowler, J. Am. Chem. Soc. 2002, 124, 10656.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) J. Xiao, M. Yang, J. W. Lauher, F. W. Fowler, Angew. Chem. Int. Ed. 2000, 39, 2132.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) C. L. Chen, A. M. Goforth, M. D. Smith, C. Y. Su, H. C. zur Loye, Angew. Chem. Int. Ed. 2005, 44, 6673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SnsLbO&md5=3d1a7aa2ecafae190e92af6bc4e26368CAS |
      (b) G. J. Halder, C. J. Kepert, J. Am. Chem. Soc. 2005, 127, 7891.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. M. Zhang, Z. M. Hao, W. X. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 2007, 46, 3456.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) H. J. Kim, J. H. Lee, M. Lee, Angew. Chem. Int. Ed. 2005, 44, 5810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGlsLvE&md5=cc147aa82f912fd44744eb29bf68f841CAS |
      (b) C. Lidrissi, A. Romerosa, M. Saoud, M. Serrano-Ruiz, L. Gonsalvi, M. Peruzzini, Angew. Chem. Int. Ed. 2005, 44, 2568.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. C. Wu, P. Thanasekaran, C. H. Tsai, J. Y. Wu, S. M. Huang, Y. S. Wen, K. L. Lu, Inorg. Chem. 2006, 45, 295.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Y. Karabach, M. F. C. G. da Silva, M. N. Kopylovich, A. J. L. Pombeiro, Cryst. Growth Des. 2006, 6, 2200.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. J. Zhang, Y. Zhao, S. A. Gamboa, A. Lachgar, Cryst. Growth Des. 2008, 8, 172.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Y. Wu, M. T. Ding, Y. S. Wen, Y. H. Liu, K. L. Lu, Chem. – Eur. J. 2009, 15, 3604.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. T. Ding, J. Y. Wu, Y. H. Liu, K. L. Lu, Inorg. Chem. 2009, 48, 7457.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Y. Wu, S. L. Yang, T. T. Luo, Y. H. Liu, Y. W. Cheng, Y. F. Chen, Y. S. Wen, L. G. Lin, K. L. Lu, Chem. – Eur. J. 2008, 14, 7136.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) M. L. Sun, L. Zhang, Q. P. Lin, J. Zhang, Y. G. Yao, Cryst. Growth Des. 2010, 10, 4.

[10]  (a) G. M. Whitesides, M. Boncheva, Proc. Natl. Acad. Sci. USA 2002, 99, 4769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFKms74%3D&md5=d196785c23193ad3b14a19b2053eb9d9CAS | 11959929PubMed |
      (b) C. S. Campos-Fernandez, B. L. Schottel, H. T. Chifotides, J. K. Bera, J. Bacsa, J. M. Koomen, D. H. Russell, K. R. Dunbar, J. Am. Chem. Soc. 2005, 127, 12909.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. S. Vickers, P. D. Beer, Chem. Soc. Rev. 2007, 36, 211.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Xue, C. A. Mirkin, Angew. Chem. Int. Ed. 2007, 46, 2036.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. B. Dong, Y. Y. Jiang, J. Li, J. P. Ma, F. L. Liu, B. Tang, R. Q. Huang, S. R. Batten, J. Am. Chem. Soc. 2007, 129, 4520.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. Sun, Y. Ke, T. M. Mattox, B. A. Ooro, H. C. Zhou, Chem. Commun. 2005, 5447.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) K. Suzuki, M. Kawano, M. Fujita, Angew. Chem. Int. Ed. 2007, 46, 2819.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) W. M. Reichert, J. D. Holbrey, K. B. Vigour, T. D. Morgan, G. A. Broker, R. D. Rogers, Chem. Commun. 2006, 4767.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) X. Wang, J. J. Vittal, Inorg. Chem. 2003, 42, 5135.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) M. D. Pluth, K. N. Raymond, Chem. Soc. Rev. 2007, 36, 161.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) T. T. Luo, L. Y. Hsu, C. C. Su, C. H. Ueng, T. C. Tsai, K. L. Lu, Inorg. Chem. 2007, 46, 1532.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) R. M. McKinlay, J. L. Atwood, Angew. Chem. Int. Ed. 2007, 46, 2394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVansL4%3D&md5=b4ff646cd46fd4d53eb81551e1c6d95fCAS |
      (b) G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed. 2007, 46, 2366.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. Willner, B. Basnar, B. Willner, Adv. Funct. Mater. 2007, 17, 702.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. L. Atwood, L. J. Barbour, S. J. Dalgarno, M. J. Hardie, C. L. Raston, H. R. Webb, J. Am. Chem. Soc. 2004, 126, 13170.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar | 18197340PubMed |
      (b) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Science 2003, 423, 705.
      (c) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, Acc. Chem. Res. 2005, 38, 273.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. W. Hosseini, Acc. Chem. Res. 2005, 38, 313.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. M. Chen, M. L. Tong, Acc. Chem. Res. 2007, 40, 162.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. Bencini, C. Benelli, A. Caneschi, R. L. Carlin, A. Dei, D. Gatteschi, J. Am. Chem. Soc. 1985, 107, 8128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVSjtg%3D%3D&md5=42106207c2ff63fd5e85a6bbc478d923CAS |
      (b) A. J. Blake, R. O. Gould, P. E. Y. Milne, R. E. P. Winpenny, J. Chem. Soc. Chem. Commun. 1992, 522.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Q. Wu, G. H. Guo, C. Yang, F. K. Zheng, X. Liu, G. C. Guo, J. S. Huang, Z. C. Dong, Y. Takano, Eur. J. Inorg. Chem. 2005, 1947.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) J. P. Costes, F. Dahan, G. Novitchi, V. Arion, S. Shova, J. Lipkowski, Eur. J. Inorg. Chem. 2004, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1emurk%3D&md5=c774515755eaab2dea8a60eddeb73b15CAS |
      (b) R. Koner, G. H. Lee, Y. Wang, H. H. Wei, S. Mohanta, Eur. J. Inorg. Chem. 2005, 1500.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Pointillart, K. Bernot, R. Sessoli, D. Gatteschi, Chem. Eur. J. 2007, 13, 1602.
      (d) S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. Am. Chem. Soc. 2004, 126, 420.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Zhu, F. Luo, X. F. Feng, Z. W. Liao, Y. M. Song, H. X. Huang, X. Z. Tian, G. M. Sun, M. B. Luo, Aust. J. Chem. 2013, 66, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyltrs%3D&md5=3cb0a17885e31146e3132931313b3ee9CAS |

[16]  T. Hamamatsu, K. Yabe, M. Towatari, S. Osa, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. L. Gallani, A. Barla, P. Imperia, C. Paulsen, J. P. Kappler, Inorg. Chem. 2007, 46, 4458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFChsr8%3D&md5=1548054a35402e72a465f87ab45aff8fCAS | 17458954PubMed |

[17]  W. X. Zhang, Y. Y. Yang, S. B. Zai, S. W. Ng, X. M. Chen, Eur. J. Inorg. Chem. 2008, 679.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  M. Andruh, I. Ramade, E. Codjovi, O. Guillou, O. Kahn, J. C. Trombe, J. Am. Chem. Soc. 1993, 115, 1822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlyls78%3D&md5=3c42a25e3ef5a6a76307092db96e8bcdCAS |

[19]  I. Ramade, O. Kahn, Y. Jeannin, F. Robert, Inorg. Chem. 1997, 36, 930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1OisLY%3D&md5=9f0e6f382c6295e3357e628814fc6eb4CAS |

[20]  A. J. Blake, P. E. Y. Milne, P. Thornton, R. E. P. Winpenny, Angew. Chem. Int. Ed. 1991, 30, 1139.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) Y. B. Dong, M. D. Smith, H. C. zur Loye, Inorg. Chem. 2000, 39, 1943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFGjsLs%3D&md5=a1813084dcb2af9b8abf578a5e66b725CAS | 11428114PubMed |
         (b) G. Fan 2010, Ph.D. thesis, Northwest University, Xi’an.

[22]  M. Ji, M. Y. Liu, S. L. Gao, Instrum. Sci. Technol. 2001, 29, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlSjsbg%3D&md5=b11146c0f8af995be5d099f3a164656fCAS |

[23]  V. K. Marehada, J. Res. NBS Standards 1980, 85, 467.

[24]  S. L. Gao, Y. Fang, S. P. Chen, Acta Chim. Sin. 2002, 60, 2220.
         | 1:CAS:528:DC%2BD38Xpslyqt7w%3D&md5=1f3f7098842da173efb8ec4a5194dcbaCAS |

[25]     (a) AXS Bruker, SMART, Version 5.0 1998 (Bruker AXS: Madison, WI).
         (b) AXS Bruker, SAINT-PLUS, Version 6.0 1999 (Bruker AXS: Madison, WI).
      (c) R. H. Blessing, Acta Crystallogr. A 1995, 51, 33.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. A. S. Goher, A. M. M. Abu-Youssef, F. A. Mautner, Polyhedron 1998, 17, 3305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslOlurw%3D&md5=5d21a9ca7d551bdc375545201538b046CAS |

[27]  C. J. O’Connor, C. L. Klein, R. J. Majeste, L. W. Trefonas, Inorg. Chem. 1982, 21, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVyrtQ%3D%3D&md5=7825be349ea0df35459313e248df1c8bCAS |

[28]  A. Mondal, E. L. Klein, M. A. Khan, R. P. Houser, Inorg. Chem. 2003, 42, 5462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSmtrc%3D&md5=3756dfc6320bd937b96a9bcdb8b8090fCAS | 12950186PubMed |

[29]  A. L. Spek, Platon: A Multipurpose Crystallographic Tool 2001 (Utrecht University: Utrecht, The Netherlands).

[30]  H. M. Haendler, Acta Crystallogr. 1985, C41, 690.
         | 1:CAS:528:DyaL2MXksVKhs78%3D&md5=d2c0eaf529324a12e53ae44d22565503CAS |

[31]  R. Ahlrichs, C. E. Anson, D. Fenske, O. Hampe, A. Rothenberger, M. Sierka, Angew. Chem. Int. Ed. 2003, 42, 4036.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSltro%3D&md5=4016ebd0f56a5fa301dd43f5ec4c39eeCAS |

[32]  A. W. Addison, T. N. Rao, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=db39a67eb2e55a22eb54cb229ac51331CAS |

[33]  (a) A. Cingolani, S. Galli, N. Masciocchi, L. Pandolfo, C. Pettinari, A. Sironi, J. Am. Chem. Soc. 2005, 127, 6144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2nt78%3D&md5=b258b56417c2af9e05b5972472741c65CAS | 15853299PubMed |
      (b) C. Aronica, G. Pilet, G. Chastanet, W. Wernsdorfer, J. F. Jacquot, D. Luneau, Angew. Chem. Int. Ed. 2006, 45, 4659.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Aromí, J. Ribas, P. Gamez, O. Roubeau, H. Kooijman, A. L. Spek, S. Teat, E. MacLean, S. E. Helen, J. Reedijk, Chem. – Eur. J. 2004, 10, 6476.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Ambrosi, M. Formica, V. Fusi, L. Giorgi, A. Guerri, S. Lucarini, M. Micheloni, P. Paoli, P. Rossi, G. Zappia, Inorg. Chem. 2005, 44, 3249.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  (a) I. B. Bersuker, Chem. Rev. 2001, 101, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslagsLY%3D&md5=fc683097125e7daf18c19c649e309a02CAS | 11709858PubMed |
      (b) O. Sereda, H. Stoeckli-Evans, O. Dolomanov, Y. Filinchuk, P. Pattison, Cryst. Growth Des. 2009, 9, 3168.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Pinkas, J. C. Huffman, D. V. Baxter, M. H. Chisholm, K. G. Caulton, Chem. Mater. 1995, 7, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1KmsL8%3D&md5=65f163e315aa87d2597ec3112c595198CAS |

[36]  S. C. Thompson, D. J. Cole-Hamilton, D. C. Gilland, M. L. Hitchman, J. C. Barnes, Adv. Mater. Opt. Electron. 1992, 1, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtFGnsb8%3D&md5=870e3c9b4077fa7e326eb4c2951b076aCAS |

[37]  C. L. Klein, R. J. Majeste, L. M. Trefonas, C. J. O’Connor, Inorg. Chem. 1982, 21, 1891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhslegsrw%3D&md5=02b6dc001a5a7962b3f1ff968666e495CAS |

[38]  S. Mukhopadhyay, P. B. Chatterjee, D. Mandal, G. Mostafa, A. Caneschi, J. V. Slageren, T. J. R. Weakley, M. Chaudhury, Inorg. Chem. 2004, 43, 3413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOit70%3D&md5=2c58d57071f228f7528f89f480d325a3CAS | 15154803PubMed |

[39]  L. Y. Wang, L. C. Li, D. Z. Liao, Z. H. Jiang, S. P. Yan, Eur. J. Inorg. Chem. 2004, 2266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Ohtr8%3D&md5=4b0aefde25247cf83e4fbf3323ea6810CAS |

[40]  O. Kahn, Molecular Magnetism 1993 (Wiley VCH: New York, NY).

[41]  J. W. Hall, Ph.D. Dissertation 1977, University of North Carolina, Chapel Hill, NC, USA.

[42]  J. C. Bonner, M. E. Fisher, Phys. Rev. 1964, 135, A640.
         | Crossref | GoogleScholarGoogle Scholar |