Free Radical Processes in Non-enzymatic Browning of Glucose and Lysine: Influence of Temperature and Unsaturated Lipids
Rikke V. Hedegaard A , Cecile Santos B , Thoo Yin Yin C and Leif H. Skibsted A DA Food Chemistry, Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
B INP-ENSIACET, 4, Allée Emile Monso, 31030 Toulouse, France.
C School of Science, Monash University Sunway Campus, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia.
D Corresponding author. Email: ls@life.ku.dk
Australian Journal of Chemistry 67(5) 805-812 https://doi.org/10.1071/CH13572
Submitted: 21 October 2013 Accepted: 2 January 2014 Published: 13 February 2014
Abstract
Formation of dialkylpyrazinium radical cations in aerated 70 % aqueous glycerol solutions of glucose and lysine during heating resulting in browning (90, 110, and 130°C, investigated) was more dependent on temperature than formation of brown colour. Activation energy (Ea) for radical formation was ~83 kJ mol–1, compared with ~70 kJ mol–1 for browning, and was unaffected by methyl linolenate. Low-temperature browning was influenced by non-radical degradation of Amadori products, whereas radical processes were prominent at higher temperatures and were unaffected by unsaturated lipids. In contrast, methyl linolenate reacts with lysine in the absence of glucose to form fluorescent products at a slow rate (Ea 25 kJ mol–1). Glucose increased the rate of formation of fluorescent products (Ea ~60 kJ mol–1), in agreement with Maillard reactions at low temperatures involving glucose as a rate-determining reagent. Lipid oxidation does not have a direct effect on lysine and glucose browning reactions at conditions relevant for food; effects of lipids on Maillard reactions are matrix-related.
References
[1] D. C. Bos, W. L. de Ranitz-Greven, H. W. de Valk, Diabetes Technol. Ther. 2011, 13, 773.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOitLs%3D&md5=039233bb91410cbf730d34d09975935cCAS | 21510765PubMed |
[2] M. A. Glomb, V. M. Monnier, J. Biol. Chem. 1995, 270, 10017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlWnsrY%3D&md5=e3ff8eabaf900122419dcff2c81ff102CAS | 7730303PubMed |
[3] T. Koschinsky, C. J. He, T. Mitsuhashi, R. Bucala, C. Liu, C. Buenting, K. Heitmann, H. Vlassara, Proc. Natl Acad. Sci. USA 1997, 94, 6474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFGhu7g%3D&md5=632b5dfe6cbbcdfe87b51c93082e8ed8CAS | 9177242PubMed |
[4] R. Zamora, F. J. Hidalgo, CRC Crit. Rev. Food Sci. 2005, 45, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeht78%3D&md5=549fc724554be70317dd81ffac828215CAS |
[5] M. W. Poulsen, R. V. Hedegaard, J. M. Andersen, B. de Courten, S. Bügel, J. Nielsen, L. H. Skibsted, L. O. Dragsted, Food Chem. Toxicol. 2013, 60, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVahsLfF&md5=6d9bff783b360e1712081b5625e07e4dCAS | 23867544PubMed |
[6] J. E. Hodge, J. Agric. Food Chem. 1953, 1, 928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXht1Gjsg%3D%3D&md5=c26dfdcb1e3f138622a6d42dec4f0b10CAS |
[7] T. Hayashi, Y. Ohta, M. Namiki, J. Agric. Food Chem. 1977, 25, 1282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlvVCqsLg%3D&md5=22157b1d690bb23e9de4785613990101CAS | 199637PubMed |
[8] T. Hofmann, W. Bors, K. Stettmaier, J. Agric. Food Chem. 1999, 47, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFymtA%3D%3D&md5=6f4e62566972a4ce2ed042ad02164135CAS | 10563904PubMed |
[9] T. Hofmann, W. Bors, K. Stettmaier, J. Agric. Food Chem. 1999, 47, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFymtQ%3D%3D&md5=9280d60a303f49fb0c4e741b365915caCAS | 10563905PubMed |
[10] P. R. C. Gascoyne, Int. J. Quantum Chem. 1980, 18, 93.
| Crossref | GoogleScholarGoogle Scholar |
[11] F. J. Hidalgo, R. Zamora, Aging Dis. 2005, 1043, 319.
| 1:CAS:528:DC%2BD2MXpvVKqtro%3D&md5=b5b5af76c640caa9975f4d8c2788c837CAS |
[12] B. Cämmerer, B. L. Wedzicha, L. W. Kroh, Eur. Food Res. Technol. 1999, 209, 261.
| Crossref | GoogleScholarGoogle Scholar |
[13] F. Niyati-Shirkhodaee, T. Shibamoto, J. Agric. Food Chem. 1993, 41, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXns1Wlug%3D%3D&md5=bd8c9204cb8ce4658de98dd6a7da30e5CAS |
[14] M. X. Fu, J. R. Requena, A. J. Jenkins, T. J. Lyons, J. W. Baynes, S. R. Thorpe, J. Biol. Chem. 1996, 271, 9982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFGqtbs%3D&md5=af1d90bb9c15517ce5dfc8e97a436770CAS | 8626637PubMed |
[15] M. Negroni, A. D’Agostina, A. Arnoldi, J. Agr. Food Chem. 2001, 49, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslGqt7k%3D&md5=f80403115d024ca31c95cdc80175f679CAS |
[16] C. R. Lerici, D. Barbanti, M. Manzano, S. Cherubin, Lebensm .Wiss. Technol. 1990, 23, 289.
| 1:CAS:528:DyaK3MXktFWmsQ%3D%3D&md5=074f25768e8ff4f5539b84405f1218d1CAS |
[17] S. B. Matiacevich, P. R. Santagapita, M. P. Buera, CRC Crit. Rev. Food Sci. 2005, 45, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2gsrzM&md5=fdf303144f3b699e1c97440a1169d97bCAS |
[18] P. Gatellier, V. Sante-Lhoutellier, S. Portanguen, A. Kondjoyan, Meat Sci. 2009, 83, 651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGns7rN&md5=4f9bf2e894004e6c2e142eda2dcd19cfCAS | 20416643PubMed |
[19] A. Jakas, S. Horvat, Biopolymers 2003, 69, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVais7o%3D&md5=f1a356e5c38fc290bee379ff43516793CAS | 12879488PubMed |
[20] S. Jongberg, M. Rasmussen, L. H. Skibsted, K. Olsen, Aust. J. Chem. 2012, 65, 1620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgs7%2FE&md5=c25a4d7079340005135d07279cbb21c9CAS |
[21] L. Ling, R. V. Hedegaard, L. H. Skibsted, Aust. J. Chem. 2013, 66, 1074.
[22] W. M. Baisier, T. P. Labuza, J. Agric. Food Chem. 1992, 40, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitlCjurs%3D&md5=3c2e74cbdced4ed5a8b6d69219881641CAS |
[23] F. J. Morales, S. Jimenez-Perez, Food Chem. 2001, 72, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSksrY%3D&md5=741be9161b6ee6403e1a1873e7825533CAS |
[24] R. V. Hedegaard, H. Frandsen, L. H. Skibsted, Food Chem. 2008, 108, 917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Oks7c%3D&md5=61a5a225e29f40dac7c89ac1f601f830CAS |
[25] F. J. Hidalgo, R. Zamora, J. Food Sci. 1993, 58, 667.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsl2mtrY%3D&md5=73c12327952f3db54073386b355ad203CAS |
[26] K. R. Millington, H. Ishii, G. Maurdev, Amino Acids 2010, 38, 1395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Omu7s%3D&md5=520291dfeb69a929cedf26138bcc8049CAS | 19763784PubMed |
[27] J. H. Esperson, In Chemical Kinetics and Reaction Mechanisms. 1981, pp. 65–88 (McGraw-Hill: New York).
[28] J. E. Hodge, J. Agr. Food Chem. 1953, 1, 928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXht1Gjsg%3D%3D&md5=c26dfdcb1e3f138622a6d42dec4f0b10CAS |
[29] R. Liedke, K. Eichner, In Free Radicals in Foods Chemistry, Nutrition and Health (Eds M. J. Morello, F. Shahidi, C. T. Ho) 2002, pp. 69–83(American Chemical Society: Washington, DC).
[30] M. Namiki, T. Hayashi, J. Agr. Food Chem. 1975, 23, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksVeksLw%3D&md5=8630368777757fd4801a1a27c4f31c1dCAS |