Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Colorimetric Detection of Trace Arsenic(iii) in Aqueous Solution Using Arsenic Aptamer and Gold Nanoparticles

Shenshan Zhan A C , Minglei Yu B C , Jing Lv A , Lumei Wang A and Pei Zhou A D
+ Author Affiliations
- Author Affiliations

A School of Environmental Science and Engineering, and Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, and School of Agriculture and Biology, and Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.

B School of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

C These authors contributed equally to this work.

D Corresponding author. Email: zhoupei@sjtu.edu.cn

Australian Journal of Chemistry 67(5) 813-818 https://doi.org/10.1071/CH13512
Submitted: 2 October 2013  Accepted: 6 January 2014   Published: 10 April 2014

Abstract

In this study, trace arsenic(iii) (AsIII) in aqueous solution was detected by applying a classical aptamer-based gold nanoparticles colorimetric sensing strategy. An arsenic aptamer was used as a sensing probe and gold nanoparticles as a colorimetric indicator. In the absence of AsIII, the gold nanoparticles were stabilised by the arsenic aptamer and remained dispersed at high NaCl concentrations, displaying a red solution. Contrarily, in the presence of AsIII, the gold nanoparticles were prone to aggregation, owing to the formation of aptamer–AsIII complex between the arsenic aptamer and AsIII, and thus exhibited a blue solution. By monitoring the colour change, a simple and fast colorimetric assay for AsIII was established with a detection range of 1.26–200 ppb and a detection limit of 1.26 ppb. Because this colorimetric assay only involves common reagents and can be assessed visually, it holds great potential for arsenic(iii) monitoring in environment-related and other applications.


References

[1]  M. F. Hughes, B. D. Beck, Y. Chen, A. S. Lewis, D. J. Thomas, Toxicol. Sci. 2011, 123, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu7jM&md5=99d1bd8f8ddad7525b0e0b1c334d7276CAS | 21750349PubMed |

[2]  W. R. Cullen, K. J. Reimer, Chem. Rev. 1989, 89, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVaitbg%3D&md5=1ffadb0e48f9f6ca6145e735c344d632CAS |

[3]  A. Figoli, A. Cassano, A. Criscuoli, M. Mozumder, M. T. Uddin, M. A. Islam, E. Drioli, Water Res. 2010, 44, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyjtb3K&md5=06cc58bf3d2c984a1d5d8498d93e2da9CAS | 19781734PubMed |

[4]  M. Bissen, F. H. Frimmel, Acta Hydroch. Hydrob. 2003, 31, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFKnsro%3D&md5=161bd85d35bc17b96b6568fcae836cd8CAS |

[5]  M. Tuzen, K. O. Saygi, I. Karaman, M. Soylak, Food Chem. Toxicol. 2010, 48, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wntr%2FM&md5=b4a890afcf23ac0338031ff1bcfcc792CAS | 19766692PubMed |

[6]  Y. G. Wu, L. Liu, S. S. Zhan, F. Z. Wang, P. Zhou, Analyst 2012, 137, 4171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsLjM&md5=66f2d4a3aa1b4f5658f181ac54510c77CAS |

[7]  D. E. Mays, A. Hussam, Anal. Chim. Acta 2009, 646, 6.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlSnu7w%3D&md5=5a36438921afbdbfb03f6687aeee9094CAS | 19523550PubMed |

[8]  D. Li, J. Li, X. Jia, Y. Han, E. Wang, Anal. Chim. Acta 2012, 733, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wltbw%3D&md5=8b202ede2eb343e98fd12eae3948521eCAS | 22704371PubMed |

[9]  M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Angew. Chem. 2008, 120, 6556.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  E. S. Forzani, K. Foley, P. Westerhoff, N. Tao, Sensor Actuat. B-Chem. 2007, 123, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs12it70%3D&md5=db4e65fca1ac472ccd3ace37a1cb264cCAS |

[11]  V. C. Ezeh, T. C. Harrop, Inorg. Chem. 2012, 51, 1213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKrtw%3D%3D&md5=3ad0f9f9d822b72e3fd493c624c5a3a3CAS | 22260373PubMed |

[12]  P. T. K. Trang, M. Berg, P. H. Viet, N. V. Mui, J. R. van der Meer, Environ. Sci. Technol. 2005, 39, 7625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslCnu74%3D&md5=0c832d63bc0d89679d62a5da5ab13c9cCAS |

[13]  Y. Wu, S. Zhan, H. Xing, L. He, L. Xu, P. Zhou, Nanoscale 2012, 4, 6841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qs7rP&md5=70d0d14e870964dd063d55c2b7c9d0f7CAS | 23034818PubMed |

[14]  J. W. Liu, Z. H. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFemurw%3D&md5=cd57b1d3b18667611a5e5b6f80401afaCAS |

[15]  S. Song, L. W. Wang, J. Li, C. Fan, J. Zhao, TrAC-Tend. Anal. Chem. 2008, 27, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSit7g%3D&md5=f3943ecc4ad32f8f7cc66094efa4d7bcCAS |

[16]  (a) D. E. J. Andrew, W. Szostak, Nature 1990, 346, 5.
      (b) C. Tuerk, L. Gold, Science 1990, 249, 505.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  T. Mairal, V. C. Özalp, P. L. Sánchez, M. Mir, I. Katakis, C. K. O’Sullivan, Anal. Bioanal. Chem. 2008, 390, 989.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFamtLo%3D&md5=89d5d664b492fa836f50b4f106f1b71dCAS | 17581746PubMed |

[18]  T. Hermann, D. J. Patel, Science 2000, 287, 820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVeitrY%3D&md5=d3fe40945a9040ffd5567ef2d0d95ebaCAS | 10657289PubMed |

[19]  M. Kim, H. J. Um, S. Bang, S. H. Lee, S. J. Oh, J. H. Han, K. W. Kim, J. Min, Y. H. Kim, Environ. Sci. Technol. 2009, 43, 9335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSjsr%2FJ&md5=316a8f48a7578aa6608acfbb56aed46eCAS | 20000526PubMed |

[20]  (a) Y. G. Wu, S. S. Zhan, F. Z. Wang, L. He, W. T. Zhi, P. Zhou, Chem. Commun. 2012, 48, 4459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1Gkur4%3D&md5=b058c15a4cef121a52b85175cf457800CAS |
      (b) Y. Wu, F. Wang, S. Zhan, L. Liu, Y. Luo, P. Zhou, RSC Adv. 2013, 3, 25614.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. P. Liang, Z. X. Wang, L. Zhang, J. D. Qiu, Chem. –Eur. J. 2013, 19, 5029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVOhtLg%3D&md5=bac01e53edac6551b25a286be23d8b14CAS | 23564471PubMed |

[22]  L. Li, B. X. Li, Y. Y. Qi, Y. Jin, Anal. Bioanal. Chem. 2009, 393, 2051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Ckt7s%3D&md5=6fcc6b08602af4313293b725e5586ebbCAS | 19198811PubMed |

[23]  J. Zhang, L. Wang, D. Pan, S. Song, F. Y. C. Boey, H. Zhang, C. Fan, Small 2008, 4, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehu77K&md5=478edd8f39781e711ff1f45fae1fa545CAS | 18651718PubMed |

[24]  (a) J. Liu, Y. Lu, Nat. Protoc. 2006, 1, 246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOitbvI&md5=7f696136ad6d3940a16aa71d04ffca5eCAS | 17406240PubMed |
      (b) C. C. Huang, Y. F. Huang, Z. Cao, W. Tan, H. T. Chang, Anal. Chem. 2005, 77, 5735.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. J. Dong, H. Wei, B. L. Li, J. Li, E. K. Wang, Chem. Commun. 2007, 3735.

[25]  W. Zhao, M. A. Brook, Y. Li, ChemBioChem 2008, 9, 2363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12hsrzM&md5=00c243919968d84f2c0ae01308df2a3fCAS | 18821551PubMed |

[26]  S. Zhan, Y. Wu, L. He, F. Wang, X. Zhan, P. Zhou, S. Qiu, Anal. Methods 2012, 4, 3997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleltb%2FJ&md5=dc038fb71a8f2477bd504e3ee137286bCAS |

[27]  P. Zhou, S. Zhan, Y. Wu, L. Liu, H. Xing, L. He, X. Zhan, Y. Lou, P. Zhou, RSC Adv. 2013, 3, 16962.
         | Crossref | GoogleScholarGoogle Scholar |