Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A New Synthesis of 4,5,6,7-Tetrahydropyrazolo[1,5-c]pyrimidines by a Retro-Mannich Cascade Rearrangement

Raffaele Colombo A , Kyu Ok Jeon A , Donna M. Huryn B , Matthew G. LaPorte A and Peter Wipf A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

B Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.

C Corresponding author. Email: pwipf@pitt.edu

Australian Journal of Chemistry 67(3) 420-425 https://doi.org/10.1071/CH13468
Submitted: 6 September 2013  Accepted: 28 September 2013   Published: 28 October 2013

Abstract

We discovered a new retro-Mannich reaction of in situ prepared pyrazolopyridines to give pyrazolopyrimidines that have hitherto been underrepresented in the heterocyclic chemistry literature. The isolation of a linear hydrolysis product supports a mechanistic hypothesis for this rearrangement process. In order to establish a broader access and explore potential biological applications for these medicinal chemistry building blocks, we investigated the scope of the reaction and generated small amine- as well as amide-based libraries through reductive aminations and amide couplings, respectively.


References

[1]  P. Ertl, S. Jelfs, J. Muehlbacher, A. Schuffenhauer, P. Selzer, J. Med. Chem. 2006, 49, 4568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt12mt7Y%3D&md5=7c722f74111ab108831017c102aa5785CAS | 16854061PubMed |

[2]  A. M. Virshup, J. Contreras-Garcia, P. Wipf, W. Yang, D. N. Beratan, J. Am. Chem. Soc. 2013, 135, 7296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltV2ntbc%3D&md5=43e5f39525e54c9772ac4307280dd532CAS | 23548177PubMed |

[3]  M. Ishikawa, Y. Hashimoto, J. Med. Chem. 2011, 54, 1539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVWltLw%3D&md5=56a12f3d90deb4698a8cb5d5b466e8eeCAS | 21344906PubMed |

[4]  D. J. St. Jean, C. Fotsch, J. Med. Chem. 2012, 55, 6002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFWhsL0%3D&md5=f1320fb18aa6b80a4c7dcde9920ee852CAS | 22533875PubMed |

[5]  R. Morphy, J. Med. Chem. 2010, 53, 1413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWmtbfF&md5=13fdc25434c56a94debb202a3469b5acCAS | 20166671PubMed |

[6]  P. Wipf, Z. Fang, L. Ferrié, M. Ueda, M. A. A. Walczak, Y. Yan, M. Yang, Pure Appl. Chem. 2013, 85, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslKnsrc%3D&md5=add69a691ae8daf151cfd9fe5c82ede5CAS |

[7]  (a) A. Kakehi, K. Itoh, H. Suga, H. Kobayashi, H. Muranaka, M. Shiro, Heterocycles 2011, 83, 1013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yntrg%3D&md5=68ca90ee108721f1c89f87346692cfb5CAS |
      (b) J. Galeta, S. Man, J.-P. Bouillon, M. Potacek, Eur. J. Org. Chem. 2011, 392.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. Cao, J. P. Maciejewski, S. Elzner, D. Amantini, P. Wipf, Org. Biomol. Chem. 2012, 10, 5811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSlsr7M&md5=1a898e13da7c85968b5f5346c7137a16CAS | 22473572PubMed |

[9]  B. Miller, S. Mao, K. M. G. Rosenker, J. G. Pierce, P. Wipf, Beilstein J. Org. Chem. 2012, 8, 1091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFams77O&md5=6cea5caa2ccc7451c56ba0478d3b5d8aCAS | 23019435PubMed |

[10]  C. Saiz, P. Wipf, G. Mahler, J. Org. Chem. 2011, 76, 5738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntl2qu7s%3D&md5=2e5edc0bb04556d9d9a6a5b21f586784CAS | 21634420PubMed |

[11]  C. Pizzo, C. Saiz, A. Talevi, L. Gavernet, P. Palestro, C. Bellera, L. B. Blanch, D. Benítez, J. J. Cazzulo, A. Chidichimo, P. Wipf, S. G. Mahler, Chem. Biol. Drug Des. 2011, 77, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivF2kt7c%3D&md5=a4dde99a67274188fa3dd71ab86976faCAS | 21251233PubMed |

[12]  M. Liang, C. Saiz, C. Pizzo, P. Wipf, Tetrahedron Lett. 2009, 50, 6810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWlsrrK&md5=a01ada40f924b831a71b36a52445991bCAS | 20160922PubMed |

[13]  P. Wipf, M. A. A. Walczak, Angew. Chem. Int. Ed. 2006, 45, 4172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFyntrw%3D&md5=decf3501d729dcb9cf3e4e10b66e82afCAS |

[14]  D. M. Arnold, M. G. LaPorte, S. M. Anderson, P. Wipf, Tetrahedron 2013, 69, 7719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFSisr8%3D&md5=7cad736a835fe1c19030b5df7545f308CAS | 23976798PubMed |

[15]  G. Georges, B. Goller, H.-W. Krell, A. Limberg, U. Reiff, P. Rueger, M. Rueth, WO2006108488 2006.

[16]  (a) T. M. V. D. Pinho e Melo, M. I. L. Soares, C. M. Nunes, J. A. Paixão, A. Matos Beja, M. Ramos Silva, J. Org. Chem. 2007, 72, 4406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVCjs7k%3D&md5=23de4977c184b212ced015ab7948cb39CAS |
      (b) M. I. L. Soares, T. M. V. D. Pinho e Melo, Tetrahedron Lett. 2008, 49, 4889.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) G. Destevens, H. M. Blatter, Angew. Chem. 1962, 74, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksV2gsLk%3D&md5=e03d6dade3a3ae1cf3a7a494f00f8deeCAS |
      (b) G. deStevens, A. Halamandaris, M. Bernier, H. M. Blatter, J. Org. Chem. 1963, 28, 1336.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  V. Colotta, D. Catarzi, F. Varano, G. Filacchioni, L. Cecchi, J. Med. Chem. 1996, 39, 2915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVartbs%3D&md5=4b8f7a6d4c40da79bdd73ad7961360caCAS | 8709126PubMed |

[19]  E. Berenyi, E. Szirt, P. Gorog, L. Petocz, I. Kosoczky, A. Kovacs, G. Urmos, DE 3019019 1980.

[20]  D. Burdi, K. L. Spear, L. W. Hardy, WO2010/114971 2010.

[21]  R. H. Mach, R. R. Luedtke, C. D. Unsworth, V. A. Boundy, P. A. Nowak, J. G. Scripko, S. T. Elder, J. R. Jackson, P. L. Hoffman, P. H. Evora, A. V. Rae, P. B. Molinoff, S. R. Childers, R. L. Ehrenkaufert, J. Med. Chem. 1993, 36, 3707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVCmtLo%3D&md5=3bef83cd3de406eeac9c127df96a5735CAS | 8246241PubMed |

[22]  Adapted from Y. S. Huang, W. Q. Zhang, P. F. Zhang, X. G. Liu, Ind. Eng. Chem. Res. 2010, 49, 12164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlans7fF&md5=3d86b8a1672b904531e77ed7f9241c78CAS |

[23]     (a) H. B. Josien, J. W. Clader, W. J. Greenlee, M. J. Mayer, R. J. Herr, J. L. Davis, K. Deng, M. M Hsia, S. Wan, WO2010/085525 2010.
         (b) E. K. Bayburt, J. F. Daanen, A. R. Gomtsyan, S. P. Latshaw, C. H. Lee, R. G. Schmidt, US 2008153871 2008.

[24]  T. van Herk, J. Brussee, A. M. C. H. van den Nieuwendijk, P. A. M. van der Klein, A. P. IJzerman, C. Stannek, A. Burmeister, A. Lorenzen, J. Med. Chem. 2003, 46, 3945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFaksbs%3D&md5=8ba53d0dd9284c8740ef9a80691b8fccCAS | 12930155PubMed |

[25]  (a) For related retro-Mannich rearrangements, see: G. L. Buchanan, A. C. W. Curran, Chem. Commun. 1966, 773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXhvVequw%3D%3D&md5=df338143e53e12ddd82ac84ec125faecCAS |
      (b) J. H. Schauble, E. J. Hertz, J. Org. Chem. 1970, 35, 2529.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. J. Sundberg, J. D. Bloom, J. Org. Chem. 1981, 46, 4836.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. M. Schell, P. M. Cook, J. Org. Chem. 1984, 49, 4067.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. D. Winkler, R. D. Scott, P. G. Williard, J. Am. Chem. Soc. 1990, 112, 8971.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) N. Risch, M. Langhals, T. Hohberg, Tetrahedron Lett. 1991, 32, 4465.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) D. L. Comins, C. A. Brooks, R. S. Al-awar, R. R. Goehring, Org. Lett. 1999, 1, 229.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Y. Kwak, J. D. Winkler, J. Am. Chem. Soc. 2001, 123, 7429.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) D. J. Aitken, C. Gauzy, E. Pereira, Tetrahedron Lett. 2004, 45, 2359.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) N. Cramer, J. Juretschke, S. Laschat, A. Baro, W. Frey, Eur. J. Org. Chem. 2004, 1397.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) J. D. White, D. C. Ihle, Org. Lett. 2006, 8, 1081.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) P. Chen, P. J. Carroll, S. McN. Sieburth, Org. Lett. 2009, 11, 4540.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) J. D. Winkler, M. E. Fitzgerald, Synlett 2009, 562.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) J. D. White, Y. Li, D. C. Ihle, J. Org. Chem. 2010, 75, 3569.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  P. Müller, J. Blanc, Helv. Chim. Acta 1980, 63, 1759.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  I. Abdelmoty, F. Albericio, L. A. Carpino, B. M. Foxman, S. A. Kates, Lett. Pept. Sci. 1994, 1, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1Wru7w%3D&md5=61a997b3c97c870b11fbcbc5dce64d13CAS |