Vibrational Properties of the Isotopomers of the Water Dimer Derived from Experiment and Computations
Robert Kalescky A , Wenli Zou A , Elfi Kraka A B and Dieter Cremer A BA CATCO: Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA.
B Corresponding authors. Email: ekraka@gmail.com; dieter.cremer@gmail.com
Australian Journal of Chemistry 67(3) 426-434 https://doi.org/10.1071/CH13479
Submitted: 11 September 2013 Accepted: 23 October 2013 Published: 26 November 2013
Abstract
The water dimer and its 11 deuterated isotopomers are investigated utilizing coupled cluster theory and experimental data as input for a perturbational determination of the isotopomer frequencies. Deuterium substitution reduces the H-bond stretching frequency by maximally 12 cm–1 from 143 to 131 cm–1, which makes a spectroscopic differentiation of H- and D-bonds difficult. However, utilizing the 132 frequencies obtained in this work, the identification of all isotopomers is straightforward. The CCSD(T)/CBS value of the binding energy De is 5.00 kcal mol–1. The binding energy D0 of the water dimer increases upon deuterium substitution from 3.28 to maximally 3.71 kcal mol–1 reflecting a decrease in the zero point energy contribution. The entropy values of the D-isotopomers increase from 73 to 77 entropy units in line with the general observation that a mass increase leads to larger entropies. All 12 isotopomers possess positive free binding energies at 80 K and a reduced pressure of 110 Pa, which means that they can be spectroscopically observed under these conditions.
References
[1] G. Gilli, P. Gilli, The Nature of the Hydrogen Bond–IUCr Monographs on Crystallography 23 2009 (Oxford University Press: New York, NY).[2] Hydrogen Bonding – New Insights (Ed. S. J. Grabowski) 2006, Challenges and Advances in Computational Chemistry and Physics Vol. 3 (Springer: New York, NY)
[3] K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143.
| 11749236PubMed |
[4] T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48.
| 1:CAS:528:DC%2BD38XlvFWguw%3D%3D&md5=d5820009099c698c03f12b58e0b0e37cCAS |
[5] N. Belkova, E. Shubina, L. M. Epstein, Acc. Chem. Res. 2005, 38, 624631.
[6] M. Meot-Ner, Chem. Rev. 2005, 105, 213.
| 1:CAS:528:DC%2BD2MXjslWkug%3D%3D&md5=cba86ebc31a47d633e534671e8eef240CAS | 15729772PubMed |
[7] P. Munshi, T. Row, Cryst. Rev. 2005, 11, 199.
| 1:CAS:528:DC%2BD2MXhtFWhs7jE&md5=1f46f6015401a12c9f350d641169ede1CAS |
[8] P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 2009, 42, 33.
| 1:CAS:528:DC%2BD1cXht1GjtrzO&md5=3b7d5bd5d7aacfcd00e4a5350dca42b9CAS | 18921985PubMed |
[9] S. Grabowski, Chem. Rev. 2011, 111, 2597.
| 1:CAS:528:DC%2BC3MXhvFeitr8%3D&md5=1bafa4f4f0d177a4a0b86b8c9669dfefCAS | 21322583PubMed |
[10] Y. Bouteiller, B. Tremblay, J. P. Perchard, Chem. Phys. 2011, 386, 29.
| 1:CAS:528:DC%2BC3MXpvVylur8%3D&md5=1adea35ead8f8ec9c35059f1218f8b14CAS |
[11] A. Gutberlet, G. Schwaab, M. Havenith, J. Phys. Chem. A 2011, 115, 6297.
| 1:CAS:528:DC%2BC3MXktlOltL0%3D&md5=033d67874cecd3608d3e6cb91f53607cCAS | 21469670PubMed |
[12] K. Kuyanov-Prozument, M. Y. Choi, A. F. Vilesov, J. Chem. Phys. 2010, 132, 014304.
| 20078158PubMed |
[13] F. N. Keutsch, R. J. Saykally, PNAS 2001, 98, 10533.
| 1:CAS:528:DC%2BD3MXntVGntbg%3D&md5=7714cd713a8ec335bd2139afe3c014f6CAS | 11535820PubMed |
[14] M. Y. Tretyakov, E. A. Serov, M. A. Koshelev, V. V. Parshin, A. F. Krupnov, Phys. Rev. Lett. 2013, 110, 093001.
| 23496706PubMed |
[15] J. A. Odutola, T. R. Dyke, J. Chem. Phys. 1980, 72, 5062.
| 1:CAS:528:DyaL3cXktFKhsLw%3D&md5=90d57a3541ed897f4ecd77711047e908CAS |
[16] G. T. Fraser, F. J. Lovas, R. D. Suenram, E. N. Karyakin, A. Grushow, W. A. Burns, K. R. Leopold, J. Mol. Spectrosc. 1997, 181, 229.
| 1:CAS:528:DyaK2sXhtFWltLk%3D&md5=ca9a9c7b0658cf105473149af44f8f82CAS |
[17] M. Kawasaki, A. Sugita, C. Ramos, Y. Matsumi, H. Tachikawa, J. Phys. Chem. A 2004, 108, 8119.
| 1:CAS:528:DC%2BD2cXltFWgs78%3D&md5=9c4f3637870f5045e5a3392be9f79ce3CAS |
[18] J. Ceponkus, P. Uvdal, B. Nelander, J. Phys. Chem. A 2008, 112, 3921.
| 1:CAS:528:DC%2BD1cXjsVGntLg%3D&md5=220e73d45c5179ed0692791b7030335aCAS | 18348553PubMed |
[19] D. Cremer, J. A. Larsson, E. Kraka, in New Developments in the Analysis of Vibrational Spectra on the Use of Adiabatic Internal Vibrational Modes (Ed. C. Parkanyi) 1998, pp. 259–327 (Elsevier: Amsterdam)
[20] E. Kraka, J. A. Larsson, D. Cremer, in Generalization of the Badger Rule Based on the Uses of Adiabatic Vibrational Modes (Ed. J. Grunenberg) 2010, pp. 105–149 (Wiley: New York, NY).
[21] E. Kraka, D. Cremer, ChemPhysChem 2009, 10, 686.
| 1:CAS:528:DC%2BD1MXjvVSrsro%3D&md5=d6f7b75f50411cb1f21f28dc901c3cc1CAS | 19152353PubMed |
[22] E. Kraka, M. Freindorf, D. Cremer, Chirality 2013, 25, 185.
| 1:CAS:528:DC%2BC3sXhtFSjtb0%3D&md5=a6fbf55c574d7b40e6c22ef827c20f0fCAS | 23335376PubMed |
[23] R. Kalescky, E. Kraka, D. Cremer, J. Phys. Chem. A 2013, 117, 8981.
| 1:CAS:528:DC%2BC3sXht1elsrvP&md5=4daa472d5dabcaf3ef463190f856075bCAS | 23927609PubMed |
[24] M. Freindorf, E. Kraka, D. Cremer, Int. J. Quantum Chem. 2012, 112, 3174.
| 1:CAS:528:DC%2BC38XlsFWjtbY%3D&md5=80daa8a575f64e1b2cc1466da5f884daCAS |
[25] R. Kalescky, E. Kraka, D. Cremer, Mol. Phys. 2013, 111, 1497.
| 1:CAS:528:DC%2BC3sXnvFWnt7g%3D&md5=6a6c5f81ed8e9a7dd991d90d90f12543CAS |
[26] R. Kalescky, W. Zou, E. Kraka, D. Cremer, Chem. Phys. Lett. 2012, 554, 243.
| 1:CAS:528:DC%2BC38Xhs1GntbzN&md5=a4e768555067df6926b1f9c89e615e26CAS |
[27] D. Cremer, E. Kraka, Curr. Org. Chem. 2010, 14, 1524.
| 1:CAS:528:DC%2BC3cXht12qsbrN&md5=f1a1a8765e28ca5ebf4a04939a75db7aCAS |
[28] J. Decius, J. Chem. Phys. 1963, 38, 241.
| 1:CAS:528:DyaF3sXhvVegtg%3D%3D&md5=eb803da21f5a5f9a5ff74d42d7ac1a82CAS |
[29] D. C. McKean, Chem. Soc. Rev. 1978, 7, 399.
| 1:CAS:528:DyaE1MXktF2iu74%3D&md5=a08c7881822a1c9a4791d0a22eb0b19cCAS |
[30] J. L. Duncan, J. L. Harvie, D. C. McKean, C. Cradock, J. Mol. Struct. 1986, 145, 225.
| 1:CAS:528:DyaL28XlvVSlu7o%3D&md5=664f0eec0fdeb4c18c361505b3baa1f7CAS |
[31] D. C. McKean, Int. J. Chem. Kinet. 1989, 21, 445.
| 1:CAS:528:DyaL1MXkvFKgtr8%3D&md5=b88a728620e0309267709fe5ac50b4daCAS |
[32] W. F. Murphy, F. Zerbetto, J. L. Duncan, D. C. McKean, J. Phys. Chem. 1993, 97, 581.
| 1:CAS:528:DyaK3sXkvVWktw%3D%3D&md5=5ea466c235426a5506063fa6bb735f6eCAS |
[33] B. R. Henry, Acc. Chem. Res. 1987, 20, 429.
| 1:CAS:528:DyaL2sXmtlGlt7c%3D&md5=05c113fd7549048b932f75a3206d25b1CAS |
[34] M. Vijay Madhav, S. Manogaran, J. Chem. Phys. 2009, 131, 174112.
| 1:STN:280:DC%2BD1Mjks1Sntw%3D%3D&md5=2907000a5e2010fed9f698acff4eca2cCAS | 19895003PubMed |
[35] A. Espinosa, R. Streubel, Chem. ‐ Eur. J. 2011, 17, 3166.
| 1:CAS:528:DC%2BC3MXisFeitL4%3D&md5=193804b39466780fb5549e756bc66312CAS | 21308808PubMed |
[36] W. Zou, R. Kalescky, E. Kraka, D. Cremer, J. Chem. Phys. 2012, 137, 084114.
| 22938225PubMed |
[37] W. Zou, R. Kalescky, E. Kraka, D. Cremer, J. Mol. Model. 2012, 1.
[38] Z. Konkoli, D. Cremer, Int. J. Quant. Chem. 1998, 67, 1.
| 1:CAS:528:DyaK1cXotV2lsA%3D%3D&md5=006832d52e083bc734dff8dae47830efCAS |
[39] Z. Konkoli, D. Cremer, Int. J. Quant. Chem. 1998, 67, 29.
| 1:CAS:528:DyaK1cXotV2ksw%3D%3D&md5=8a425b32ac0c8354d7fb4baeac0fff5eCAS |
[40] J. Larsson, D. Cremer, J. Mol. Struct. 1999, 485, 385.
[41] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
| 1:CAS:528:DyaL1MXlsVSkt7s%3D&md5=31c3525050584429f9c0926524510c1fCAS |
[42] T. J. Dunning, J. Chem. Phys. 1989, 90, 1007.
| 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |
[43] D. Woon, T. J. Dunning, J. Chem. Phys. 1993, 98, 1358.
| 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=897d02c14b817c4a95c4d48785829a8cCAS |
[44] Y. He, D. Cremer, J. Phys. Chem. A 2000, 104, 7679.
| 1:CAS:528:DC%2BD3cXltVOisrc%3D&md5=db2f7765b6f76688ef633acd801fbeaeCAS |
[45] D. Cremer, E. Kraka, Y. He, J. Mol. Struct. 2001, 567, 275.
[46] A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett. 1998, 286, 243.
| 1:CAS:528:DyaK1cXitVGqsLo%3D&md5=6808f8a5feca0294207e1a2e47e9defdCAS |
[47] V. Barone, J. Chem. Phys. 2005, 122, 014108.
[48] H. G. Kjaergaard, A. L. Garden, G. M. Chaban, R. B. Gerber, D. A. Matthews, J. F. Stanton, J Phys Chem. A 2008, 112, 4324.
| 1:CAS:528:DC%2BD1cXksFakt7o%3D&md5=1e6f4de693f4d67cf156093407dbc972CAS | 18407701PubMed |
[49] E. B. Wilson, J. C. Decius, P. C. Cross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra 1955 (McGraw-Hill: New York, NY).
[50] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |
[51] P. J. Stevens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
[52] J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
| 1:CAS:528:DC%2BD1cXhtlCksbfO&md5=84b1a49cbd886a15986a60afae914202CAS | 18989472PubMed |
[53] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
| 18315032PubMed |
[54] E. Kraka, M. Filatov, W. Zou, J. Gräfenstein, H. Joo, D. Izotov, J. Gauss, Y. He, A. Wu, V. Polo, L. Olsson, Z. Konkoli, Z. He, D. Cremer, COLOGNE2013 2013 (Southern Methodist University: Dallas, TX).
[55] J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O′Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, J. Almlöf, P. R. Taylor, T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, A. V. Mitin, C. van Wüllen, CFOUR 2010. Available at http://www.cfour.de