Electronic Spectroscopy of a C7H4+ Isomer in a Neon Matrix: Methyltriacetylene Cation
Arghya Chakraborty A , Jan Fulara A and John P. Maier A BA Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056, Basel, Switzerland.
B Corresponding author. Email: j.p.maier@unibas.ch
Australian Journal of Chemistry 67(3) 416-419 https://doi.org/10.1071/CH13467
Submitted: 5 September 2013 Accepted: 7 October 2013 Published: 24 October 2013
Abstract
Absorptions commencing at 602.6 nm are detected following deposition of mass-selected C7H4+ in a 6 K neon matrix produced from a 1 : 1 mixture of diacetylene and propyne in an ion source. The 602.6 nm system, and a weaker one near 421.1 nm, are assigned to the A 2E ← X 2E and B 2E ← X 2E electronic transitions of methyltriacetylene cation (C3V symmetry), based on mass-selection, spectroscopic analysis of the vibrational structure, and the excitation energies calculated with CASPT2. Structured fluorescence is detected in the 600–760 nm range upon laser excitation at wavelengths of the CH3C6H+ absorptions. The vibrational bands observed in the absorption and fluorescence spectra are assigned with the aid of calculated frequencies of the totally symmetric (a1) vibrations of methyltriacetylene cation.
References
[1] N. Hansen, S. J. Klippenstein, P. R. Westmoreland, T. Kasper, K. Kohse-Hoinghaus, J. Wang, T. A. Cool, Phys. Chem. Chem. Phys. 2008, 10, 366.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVektQ%3D%3D&md5=300bc38368e346e72a9d4417b9aa1dccCAS | 18174978PubMed |
[2] Y. Li, L. Zhang, Z. Tian, T. Yuan, K. Zhang, B. Yang, F. Qi, Proc. Combust. Inst. 2009, 32, 1293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvF2it7c%3D&md5=b53983df09739bb82e2647081b22e26aCAS |
[3] K.-H. Homann, Angew. Chem. Int. Ed. 1998, 37, 2434.
| Crossref | GoogleScholarGoogle Scholar |
[4] K. Kohse-Hoinghaus, B. Atakan, A. Lampprecht, G. G. Alatorre, M. Kamplus, T. Kasper, N.-N. Liu, Phys. Chem. Chem. Phys. 2002, 4, 2056.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Cernicharo, A. M. Heras, A. G. G. M. Tielens, J. R. Pardo, F. Herpin, M. Guelin, L. B. F. M. Waters, Astrophys. J. 2001, 546, L123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht12hsLw%3D&md5=f07f4d7991d0431356e1cb99d9970cafCAS |
[6] S. Lebonnois, E. L. O. Bakes, C. P. McKay, Icarus 2002, 505, 159.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Atreya, Science 2007, 316, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFSgtbY%3D&md5=9408ab60cd7e67f73406c46cda5ac01aCAS | 17495161PubMed |
[8] M. G. Trainer, A. A. Pavlov, H. L. DeWitt, J. L. Jimenez, C. P. McKay, O. B. Toon, M. A. Tolbert, Proc. Natl. Acad. Sci. USA 2006, 103, 18035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWjtrbF&md5=ff48547c9298a46dd5447c1d4a934db1CAS | 17101962PubMed |
[9] M. T. Bowers, P. R. Kemper, G. von Helden, P. A. M. Van Koppen, Science 1993, 260, 1446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Wmsrs%3D&md5=11f9c7916a426fead87dec9cb9cfd47bCAS | 17739800PubMed |
[10] D. S. Gemmell, Chem. Rev. 1980, 80, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtFSgtLc%3D&md5=7209f121124421c9f4f36c6b4586066fCAS |
[11] J. M. Wells, S. A. McLuckey, Methods Enzymol. 2005, 402, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosFeruro%3D&md5=a1fa4887252c31791be4d73fa8290d80CAS | 16401509PubMed |
[12] V. V. Lavrov, V. Blagojevic, G. K. Gregory, G. Orlova, D. K. Bohme, J. Phys. Chem. A 2004, 108, 5610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksF2hu7s%3D&md5=c94e697280c0a713593e8fa3e9b0081bCAS |
[13] T. Yatsuhashi, N. Nakashima, J. Azuma, J. Phys. Chem. A 2013, 117, 1393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFajtLs%3D&md5=13ae31839202a218f91a18b449daec64CAS | 23330945PubMed |
[14] J. Fulara, A. Nagy, I. Garkusha, J. P. Maier, J. Chem. Phys. 2010, 133, 024304.
| Crossref | GoogleScholarGoogle Scholar | 20632752PubMed |
[15] M. Araki, P. Cias, A. Denisov, J. Fulara, J. P. Maier, Can. J. Chem. 2004, 82, 848.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslOjsbw%3D&md5=d5d68e281d4a5bb5d766961b793dedaaCAS |
[16] M. Araki, H. Linnartz, P. Cias, A. Denisov, J. Fulara, A. Batalov, I. Shnitko, J. P. Maier, J. Chem. Phys. 2003, 118, 10561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Srsbk%3D&md5=30810011e6b5918788e1e04a6e54f95aCAS |
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02 2004 (Gaussian, Inc.: Wallingford, CT).
[18] R. Ahlrichs, F. Furche, C. Hattig, W. Klopper, M. Sierka, F. Weigend, TURBOMOLE. Available at http://www.turbomole.com/
[19] K. Andersson, P.-A. Malmqvist, B. O. Roos, J. Chem. Phys. 1992, 96, 1218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XptFKhsw%3D%3D&md5=b915a8d1e79ede343c9a064143a8c441CAS |
[20] F. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P.-A. Malmqvist, P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher, B. O. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 2010, 31, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2mu77P&md5=f87b887260ad64ccd098f1edb14fdb23CAS | 19499541PubMed |
[21] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. Freivogel, J. Fulara, D. Lessen, D. Forney, J. P. Maier, Chem. Phys. 1994, 189, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlWrt74%3D&md5=c418df8eeceac9d1cef36ab19529eaf3CAS |
[23] I. Shnitko, J. Fulara, A. Batalov, C. Gillery, H. Masso, P. Rosmus, J. P. Maier, J. Phys. Chem. A 2006, 110, 2885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKhtbbL&md5=326e72beb5e9ed4296542900774668bcCAS | 16509609PubMed |
[24] T. W. Schmidt, H. Ding, A. E. Boguslavskiy, T. Pino, J. P. Maier, J. Phys. Chem. A 2003, 107, 6550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSlsbY%3D&md5=0c9588fd3985ab75c0089ad4ba610ccfCAS |
[25] A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls12mu78%3D&md5=f80b371eb902130d812f96258e06fadfCAS |
[26] K. Filipkowski, J. Fulara, J. P. Maier, Int. J. Mass Spectrom.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. Fulara, M. Grutter, J. P. Maier, J. Phys. Chem. A 2007, 111, 11831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aru7rI&md5=a903d03d8d6854f2ee1ed7b4cc13676aCAS | 17966999PubMed |
[28] H. A. Jahn, E. Teller, Proc. R. Soc. Lond. A 1937, 161, 220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXht1Y%3D&md5=157d0bfe717e8669ca1b4b46bf1046a6CAS |