Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Critical Review of Water Radiolysis Processes, Dissociation Products, and Possible Impacts on the Local Environment: A Geochemist’s Perspective

Soumya Das
+ Author Affiliations
- Author Affiliations

Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada. Email: sod671@campus.usask.ca




Dr. Das completed his B.Sc. (1995) and M.Sc. (1997) degrees in Geology at the University of Calcutta, India. He then worked as a Research Fellow doing mineral exploration at Bengal Engineering College, India until 1999. He received a Masters degree in Geology (Petrology/Mineral Chemistry) in 2002 from the University of Akron, USA, followed by a Ph.D. in Aqueous Geochemistry in 2007 from Western Michigan University, USA. In recent years, he has worked as a Post-doctoral Associate at Rutgers University, USA (2007–2008) and as a Professional Research Associate at the University of Saskatchewan, Canada (2008–present) in Aqueous/Environmental Geochemistry.

Australian Journal of Chemistry 66(5) 522-529 https://doi.org/10.1071/CH13012
Submitted: 9 November 2012  Accepted: 16 February 2013   Published: 3 April 2013

Abstract

Radiolysis of water is the process whereby water dissociates due to various types of ionizing radiation (α, β, and γ) into hydrogen and hydroxide radicals (instead of hydrogen and hydroxide ions as in ionization). During radiolysis, water breaks down to highly reactive radicals such as OH, H, eaq, HO2, and O2–• and molecular species such as H2, O2, and H2O2. Yields of these dissociation products are largely dependent on factors including the type of radiation, vapour pressure of the system, and linear energy transfer. These dissociated radicals are highly reactive and can affect the local environment by changing redox conditions and, in turn, inducing and enhancing metal mobility in the environment. This article reviews the process of water radiolysis, dissociation products, and possible effects on the environment.


References

[1]  J. A. LaVerne, Radiat. Res. 2000, 153, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVSgsL0%3D&md5=c708b2544b47aab1cbac7f27685d05feCAS |

[2]  I. G. Draganić, Radiat. Phys. Chem. 2005, 72, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  P. M. Y. Garcia, G. M. Sigaud, H. Luna, M. B. Shah, Phys. Rev. A 2008, 77, 0527081.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  P. A. Karam, S. A. Leslie, Health Phys. 1999, 77, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFyhs7o%3D&md5=63b338576155028b1825b16ba83b0024CAS |

[5]  R. Bogdanov, A.-T. Pihlak, Oil Shale 2002, 19, 75.
         | 1:CAS:528:DC%2BD38XmslOht7Y%3D&md5=c81b66543c1180ebc1b1ff0060bc6218CAS |

[6]  K. Pedersen, FEMS Microbiol. Lett. 2000, 185, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvV2lsb4%3D&md5=fa55adbc00097f9d3b7d6e5696138349CAS |

[7]  L.-H. Lin, P.-L. Wang, D. Rumble, J. Lippmann-Pipke, E. Boice, L. M. Pratt, B. S. Lollar, E. L. Brodie, T. C. Hazen, G. L. Andersen, T. Z. DeSantis, D. P. Moser, D. Kershaw, T. C. Onstott, Science 2006, 314, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyqtr3E&md5=2f8f0d6a85a704270e8105c6f74aafb5CAS |

[8]  T. Sawasaki, T. Tanabe, T. Yoshida, R. Ishida, J. Radioanal. Nucl. Chem. 2003, 255, 271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWrtLs%3D&md5=15332953bb220e2b99256e3ca8b44430CAS |

[9]  M. Y. Al-Ani, F. R. Al-Khalidy, Int. J. Environ. Res. Public Health 2006, 3, 360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ont77I&md5=38eedebfa8cbfc314f46c54aa8fae9c3CAS |

[10]  V. Savary, M. Pagel, Geochim. Cosmochim. Acta 1997, 61, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1ak&md5=df838adea1cc1dde66705fc4200329fcCAS |

[11]  F. Cortial, F. Gauthier-Lafaye, G. Lacrampe-Couloume, A. Oberlin, F. Weber, Org. Geochem. 1990, 15, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Wrtbo%3D&md5=8f952b9497750fbaf9cc610a0131951dCAS |

[12]  R. Cooper, Aust. J. Chem. 2011, 64, 864.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFyisb8%3D&md5=a87183259338fde2ffc79e9c417a9539CAS |

[13]  P. A. Korzhavyi, L. Vitos, D. A. Anderson, B. Johansson, Nat. Mater. 2004, 3, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Krs7s%3D&md5=b64082a10e9a9e7d55930d6f4ba2d983CAS |

[14]  K. B. Krauskopf, Chem. Geol. 1986, 55, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVemsLY%3D&md5=d16f71ccde340df6ad7bcf1b44568106CAS |

[15]  F. Haber, J. Weiss, Proc. R. Soc. 1934, 147, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXnvVSq&md5=69c3766cf59ffb30dc66c4bdb09e438fCAS |

[16]  A. O. Allen, The Radiation Chemistry of Water and Aqueous Solutions, 1961 (D. Van Nostrand-Reinhold: Princeton, NJ).

[17]  H. P. Mishra, I. Fridovich, J. Biol. Chem. 1976, 247, 6960.

[18]  K. A. Khan, J. Chem. Soc. Pak. 1981, 3, 105.
         | 1:CAS:528:DyaL38XhtlGhtQ%3D%3D&md5=c7a62802887eef4a58c9db4f256c35a9CAS |

[19]  Farhataziz, M. A. J. Rodgers (Eds), Radiation Chemistry: Principles and Applications, 1987 (VCH: New York, NY).

[20]  R. J. Woods, A. K. Pikaev, Applied Radiation Chemistry, 1994 (Wiley: New York, NY).

[21]  J. Weiss, Nature 1944, 153, 748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXjvVGntw%3D%3D&md5=ab20b7eea1610c7e1243ad22ab92e07dCAS |

[22]  H. A. Dewhurst, A. H. Samuel, J. L. Magee, Radiat. Res. 1954, 1, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXjtFOitg%3D%3D&md5=eeac90be99d61c169d2db1bd03d738bfCAS |

[23]  V. Arena, Ionizing Radiation and Life 1971 (Mosby: St. Louis, MO).

[24]  A. K. Pikaev, B. G. Ershov, Russ. Chem. Rev. 1967, 36, 602.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. O. Allen, Radiat. Res. Suppl. 1964, 4, 54.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. Kazarnovski, N. Lipichin, M. Tichomirov, Nature 1956, 178, 100.

[27]  M. Daniels, E. Wigg, Science 1966, 153, 1533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XkslyksbY%3D&md5=6555cf02cc4153185130c7ebf4438ce6CAS |

[28]  C. Lifshitz, Can. J. Chem. 1962, 40, 1903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XkvVSksrs%3D&md5=a18fe9af9106dee5c17b84bbdecfd4bfCAS |

[29]  A. Kuppermann, Proc. Second Int. Congress Radiat. Res. 1963, 51.

[30]  E. Collinson, F. S. Dainton, J. Kroh, Nature 1960, 187, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXht1yksbc%3D&md5=e18f82a4bd005772532ba50f3821e625CAS |

[31]  J. Weiss, Nature 1960, 186, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtFKksg%3D%3D&md5=ef36e0099ede39b21a209b898036bb6fCAS |

[32]  M. I. Burton, J. Phys. Colloid Chem. 1947, 51, 611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXhvVertQ%3D%3D&md5=2c618871aac65dfddcbda01945c3c6c6CAS |

[33]  R. S. Dixon, M. G. Bailey, Can. J. Chem. 1968, 46, 1181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtFyntb0%3D&md5=427277c56cdb2c609057ed8da2fc6afdCAS |

[34]  M. Huerta Parajon, P. Rajesh, T. Mu, S. M. Pimblott, J. A. Laverne, Radiat. Phys. Chem. 2008, 77, 1203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFajtbvI&md5=4d2a83c42da02e7e8bf7d5a5758d22ebCAS |

[35]  P. Rotureau, J. P. Renault, B. Lebeau, J. Patarin, J. C. Mialocq, ChemPhysChem 2005, 6, 1316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVKgurg%3D&md5=5faca7d6c05db7f12ac450d70db47e05CAS |

[36]  F. S. Dainton, W. S. Watt, Nature 1962, 195, 1294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXhtVOh&md5=b9db225d4755e22cd9c55760d551bca8CAS |

[37]  G. V. Buxton, F. S. Dainton, Proc. R. Soc. A. 1968, 304, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtFShtbc%3D&md5=c4331d8a39e1c1a196309d0b9959349dCAS |

[38]  F. S. Dainton, R. Rumfeldt, Proc. R. Soc. Lond. A Math. Phys. Sci. 1965, 287, 444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXksF2kuro%3D&md5=776eb47a258c0aacae8ba97b963c36a8CAS |

[39]  I. G. Draganic, Z. D. Draganic, The Radiation Chemistry of Water 1971 (Academic Press: New York, NY).

[40]  C. Ferradini, J.-P. Jay-Gerin, Res. Chem. Intermed 2000, 26, 549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosF2ksr8%3D&md5=b4f64670c85304917f10ff239753a558CAS |

[41]  W. Burns, H. Sims, J. Chem. Soc., Faraday Trans. 1981, 77, 2803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XnslCiuw%3D%3D&md5=b8c7f6441b72b61b34b11e22ba2576a5CAS |

[42]  S. Sanguanmith, Y. Muroya, T. Tippayamontri, J. Meesungnoen, M. Lin, Y. Katsumura, J.-P. Jay-Gerin, Phys. Chem. Chem. Phys. 2011, 13, 10690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFamtr8%3D&md5=0a9fbdaf686e806def5d022f4599e0a8CAS |

[43]  C. J. Hochanadel, J. A. Ghormley, Radiat. Res. 1962, 16, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF38%2FkvFaruw%3D%3D&md5=ab8d7481cf620cb0d4d0d11925f04afdCAS |

[44]  A. R. Anderson, B. Knight, J. A. Winter, Nature 1966, 209, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xls12ntA%3D%3D&md5=1304046b8d0de4df66877503419d93d1CAS |

[45]  N. A. Kalashnilov, B. S. Kalinichenko, V. G. Kulazhko, I. K. Shvetsov, Atomnaya Energiya 1990, 69, 17.

[46]  N. G. Petrik, A. B. Alexandrov, A. I. Vall, J. Phys. Chem. B 2001, 105, 5935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFequrk%3D&md5=ed40a37c4ec15f63cce550425356874aCAS |

[47]  A. Cecal, M. Goanta, M. Palamaru, T. Stoicescu, K. Popa, A. Paraschivescu, V. Anita, Radiat. Phys. Chem. 2001, 62, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsV2rtrs%3D&md5=de754b3433c1e025c3f2a8674ad14c1dCAS |

[48]  M. V. Vladimirova, I. A. Kulikov, Radiochem 2002, 44, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Wnu7Y%3D&md5=34fb21487a0545abd69af1ebe58605cbCAS |

[49]  S. Le Caër, Water 2011, 3, 235.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  A. Chindris, PhD dissertation: Degradation of Refractory Organic Compounds in Aqueous Wastes Employing a Combination of Biological and Chemical Treatments 2011 (University of Cagliari, Italy).

[51]  N. Getoff, Phys. Chem 1996, 47, 581.
         | 1:CAS:528:DyaK28Xhs1arur0%3D&md5=6a49d7163f41e1e79e06225bd152055cCAS |

[52]  IAEA Industrial Applications in Chemistry Sections: Radiation Treatment of Polluted Water and Wastewater 2008 (IAEA: Vienna).

[53]  A. W. Boyd, C. Willis, O. Miller, Can. J. Chem. 1973, 51, 4056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXns1Khtg%3D%3D&md5=117ebd64106a7abf9822877922f8dcb3CAS |

[54]  K. N. Jha, T. G. Ryan, G. R. Freeman, J. Phys. Chem. 1975, 79, 868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhslyitr0%3D&md5=876c201b032bb87eb936fd056020e457CAS |

[55]  D. Swiatla-Wojcik, G. Buxton, Res. Chem. Intermed 2001, 27, 875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFOqug%3D%3D&md5=e52df64a96a9ea2f3128eace5b266c99CAS |

[56]  L.-H. Lin, G. F. Slater, B. S. Loliar, G. L. Couloume, T. C. Onstott, Geochim. Cosmochim. Acta 2005, 69, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVGhtrY%3D&md5=3c2a2114e13ba08732cd7d95c24d1c6bCAS |

[57]  D. B. Curtis, A. J. Gancarz, Radiolysis in Nature: Evidence from the Oklo Natural Reactors (SKBF/KBS no. 83–10), 1983, Stockholm, Sweden.

[58]  N. A. Chapman, I. G. McKinley, J. A. T. Smellie, The Potential of Natural Analogues in Assessing Systems for Deep Disposal of High-level Radioactive Waste. NAGRA NTB-84–41. Baden, Switzerland. EIR BER NR 545, Würenlingen, and KBS TR-84–16, 1984 Stockholm.

[59]  J. Dubessy, M. Pagel, J.-M. Beny, H. Christensen, B. Hickel, C. Kosztolanyi, B. Poty, Geochim. Cosmochim. Acta 1988, 52, 1155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1GntbY%3D&md5=0519cf4b2c95b301ce9b6566ba231c3cCAS |

[60]  C. Frejacques, C. Blain, C. Devillers, R. Hagemann, J. C. Ruffenach, The Oklo Phenomenon, IAEA 1975, 509.

[61]  W. J. Maeck, F. W. Spraktes, R. L. Tromo, J. H. Keller, The Oklo Phenomenon, IAEA, 1975, 319.

[62]  R. D. Walton, G. A. Cowan, The Oklo Phenomenon, IAEA 1975, 499.

[63]  R. D. Loss, K. J. R. Rosman, J. R. De Latter, D. B. Curtis, Chem. Geol. 1989, 76, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlOru7g%3D&md5=8a366f2e8d6753a394cb14b1808a3f25CAS |

[64]  J. E. Fulghum, S. R. Bryan, R. W. Linton, Environ. Sci. Technol. 1988, 22, 463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFymt74%3D&md5=f998bab0b451655da04fa1104f164732CAS |

[65]  R. J. Crawford, I. H. Harding, D. E. Mainwaring, Langmuir 1993, 9, 3050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFOisLc%3D&md5=0ad48143c0399f1122a7f0676d5ecac0CAS |

[66]  T. Arakaki, J. W. Morse, Geochim. Cosmochim. Acta 1993, 57, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXosVKmsA%3D%3D&md5=915da0894a9393a8e7b08059b9800f67CAS |

[67]  J. W. Murray, Geochim. Cosmochim. Acta 1975, 39, 505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFens7k%3D&md5=627e0a2f17211e084d2cbbe35e60bedfCAS |

[68]  R. M. McKenzie, Aust. J. Soil Res. 1980, 18, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkslKgu70%3D&md5=66361f8b6376b75f7887e73745008e35CAS |

[69]  R. Bros, L. Turpin, F. Gauthier-Lafaye, P. Holliger, P. Stille, Geochim. Cosmochim. Acta 1993, 57, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFyht7Y%3D&md5=f9f3b322058ef29e8bda5032add11abbCAS |

[70]  R. G. Ford, P. M. Bertsch, K. J. Farley, Environ. Sci. Technol. 1997, 31, 2028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGisbc%3D&md5=754ac4b76ff78fa488930b78e29ae74eCAS |

[71]  S. L. S. Stipp, M. Hansen, R. Kristensen, M. F. Hochella, L. Bennesden, K. Dideriksen, T. Balic-Zunic, D. Leonard, H.-J. Mathieu, Chem. Geol. 2002, 190, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFaitrs%3D&md5=33f81582cf09958d94a78302c0e145caCAS |

[72]  C. L. Chun, R. L. Penn, W. A. Arnold, Environ. Sci. Technol. 2006, 40, 3299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjtlartr8%3D&md5=ced820b99ac6f4940fe359d60a75fad6CAS |

[73]  K. L. Straub, M. Benz, B. Schink, FEMS Microbiol. Ecol. 2001, 34, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Ghtbg%3D&md5=20b36403360e010cce8f222c5f6e2190CAS |

[74]  J. S. LaKind, A. T. Stone, Geochim. Cosmochim. Acta 1989, 53, 961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks1Wisbg%3D&md5=f102e8284d288374521f3322bb86a3aeCAS |

[75]  V. Chatain, F. Sanchez, R. Bayard, P. Moszkowicz, R. Gourdon, J. Hazard. Mater. 2005, 122, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWhsr0%3D&md5=7a102e4c0d448afc175888ae2cde939dCAS |

[76]  H. D. Pedersen, D. Postma, R. Jakobsen, Geochim. Cosmochim. Acta 2006, 70, 4116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVejsrk%3D&md5=a2e0f974bae75705de80ac63ccb6c831CAS |

[77]  M. Davranche, J.-C. Bollinger, J. Colloid Interface Sci. 2000, 232, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVeltb8%3D&md5=86c4d0feb1763e3be5dadc9746c34470CAS |

[78]  B. Bennett, M. J. Dudas, J. Environ. Eng. Sci. 2003, 2, 265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Gjtb4%3D&md5=2c0e6fffc5fce0d57c001368875da324CAS |

[79]  D. T. Scott, D. M. McKnight, E. L. Blunt-Harris, S. E. Kolesar, D. R. Lovely, Environ. Sci. Technol. 1998, 32, 2984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVKmurs%3D&md5=016ad085cd96dc5b68f3860f346a079cCAS |

[80]  T. Peretyazhko, J. M. Zachara, S. M. Heald, B.-H. Jeon, R. K. Kukkadapu, C. Liu, D. Moore, C. T. Resch, Geochim. Cosmochim. Acta 2008, 72, 1521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOjtbo%3D&md5=1c0297278df4c83dd1c375ce04db426bCAS |

[81]  H. C. B. Hansen, C. B. Koch, H. Nancke-Krogh, O. K. Borggaard, J. Sorensen, Environ. Sci. Technol. 1996, 30, 2053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFansbw%3D&md5=b4973bb4961ee924630a5fa46511119eCAS |

[82]  E. Liger, L. Charlet, P. Van Cappellen, Geochim. Cosmochim. Acta 1999, 63, 2939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVClt78%3D&md5=497a1f1e8c0dfa28629407b54e83e351CAS |

[83]  T. Behrends, P. Van Cappellen, Chem. Geol. 2005, 220, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFSms70%3D&md5=6cffa80ba6a33796c4fb1abc39425a5dCAS |

[84]  I. J. Buerge, S. J. Hug, Environ. Sci. Technol. 1999, 33, 4285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslSnt7s%3D&md5=b83322e96ac757b1cbfe17f6a51a7753CAS |

[85]  L. Charlet, E. Silvester, E. Liger, Chem. Geol. 1998, 151, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtl2gtrw%3D&md5=202399112e3cbd5f5dd5269d244b1ed3CAS |

[86]  D. Colón, E. J. Weber, J. L. Anderson, Environ. Sci. Technol. 2006, 40, 4976.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  S. Wang, H. Xin, Y. Qian, Mater. Lett. 1997, 33, 113.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  S. Wang, H. Xin, Radiat. Phys. Chem. 1999, 56, 567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVCqtbg%3D&md5=20fa19bdff2250e7ef52aa260a6c271cCAS |

[89]  T. Jurkin, K. Zadro, M. Gotić, S. Musić, Radiat. Phys. Chem. 2011, 80, 792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFanurk%3D&md5=1b6f7add5aaff449c393f8caab1c259aCAS |