Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

A Review of Catalytic Systems for Glycerol Oxidation: Alternatives for Waste Valorization

Juan Carlos Beltrán-Prieto A B , Karel Kolomazník A and Jiří Pecha A
+ Author Affiliations
- Author Affiliations

A Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic.

B Corresponding author. Email: prieto@fai.utb.cz




Juan Carlos Beltrán Prieto obtained his bachelor’s and master’s degrees in biochemical engineering from the Technological Institute of Celaya (México). He is currently a third-year Ph.D. student in the research group of Professor Karel Kolomazník. His research is focused on mathematical optimisation, catalytical systems, and hazardous waste treatment technologies.



Professor Karel Kolomazník is a chemical engineer working in the field of leather processing and waste utilisation. He is a laureate of the Rolex Award for Enterprise, for the development of technology for processing and recycling of potentially hazardous chrome-tanned waste produced by the leather industry.



Jiří Pecha is a chemical engineer, with a master’s degree in polymer processing from Tomas Bata University in Zlin. His research interests cover processing of waste fats and oils into biodiesel and glycerine, process development, and mathematical simulations. He is presently working as a researcher at Tomas Bata University in Zlin.

Australian Journal of Chemistry 66(5) 511-521 https://doi.org/10.1071/CH12514
Submitted: 6 November 2012  Accepted: 15 February 2013   Published: 14 March 2013

Abstract

Endeavours leading to the study of glycerol oxidation result from the imperative necessity for wise utilization of surplus glycerine generated as by-product from biodiesel manufacture. The oxidation of glycerol is one of the most promising reactions as it leads to the generation of valuable glycerol derivatives that find broad application in pharmaceutical, polymer, and food industries. This review highlights the processing alternatives for glycerol by means of biocatalyst-mediated, heterogeneous, homogeneous, and electrochemical oxidation. The current state of the art is evaluated and recommendations for further research and future directions are included.


References

[1]  R. Alenezi, G. Leeke, J. Winterbottom, R. Santos, R. Khan, Energy Convers. Manage. 2010, 51, 1055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSktr4%3D&md5=b08df975f07ba0320b598615087be863CAS |

[2]  A. Basha, K. Raja, S. Jebaraj, Renew. Sust. Energ. Rev 2009, 13, 1628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVGnsL8%3D&md5=2db805cdfc89c5d36d9dda9ebdac7087CAS |

[3]  M. Zabeti, W. Wan, M. Kheireddine, Fuel Process. Technol. 2010, 91, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SktLjJ&md5=462092bd412771ebfa144034152e8f1cCAS |

[4]  F. Ferella, G. Mazziotti, D. Celso, I. De Michelis, V. Stanisci, F. Vegliò, Fuel 2010, 89, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WgsLrI&md5=043db33b1293f2bd1108b740723a22d4CAS |

[5]  N. Jovanović, K. Kolomazník, V. Vašek, Transactions of the VŠB – Technical University of Ostrava. Mechanical Series 2008, 2, 43.

[6]  J. Krahl, J. Bünger, A. Munack, M. Bahadir, O. Schröder, H. Stein, M. Dutz, Environ. Bull. , 12, 640.

[7]  S. Ritter, Chem. Eng. News 2005, 83, 37.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  X. Lang, A. Dalai, N. Bakhshi, M. Reaney, P. Hertz, Bioresour. Technol. 2001, 80, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCjsbs%3D&md5=c8023aaafb1e46c7a27a9c5d8d3bd643CAS |

[9]  G. Antolin, F. Tinaut, Y. Briceno, V. Castano, C. Perez, A. Ramirez, Bioresour. Technol. 2002, 83, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFGrtLo%3D&md5=c6b81ae10cebb7c888e463e74d1b2c6eCAS |

[10]  G. Vicente, M. Martínez, J. Aracil, Bioresour. Technol. 2004, 92, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVegsA%3D%3D&md5=802421382170cb9e4fb5f9041dc3d49eCAS |

[11]  Y. Sharma, B. Singh, S. Upadhyay, Fuel 2008, 87, 2355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1egurY%3D&md5=0e39f2c4ebde5cdbc4c9a5fd16231045CAS |

[12]  J. Szybist, J. Song, M. Alam, A. Boehman, Fuel Process. Technol. 2007, 88, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFygtLY%3D&md5=b5762caf64144b5a1acbd12967743a81CAS |

[13]  M. Graboski, R. McCormick, Prog. Energ. Combust. 1998, 24, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFeju7w%3D&md5=4c689c9a64cd17370f90e90f4beb9df0CAS |

[14]  M. Diasakou, A. Louloudi, N. Papayannakos, Fuel 1998, 77, 1297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1SrsLc%3D&md5=4005d5b0e28f011f8805c396ea2e1dc5CAS |

[15]  H. Berchmans, S. Hirata, Bioresour. Technol. 2008, 99, 1716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVGktA%3D%3D&md5=589c4c828f1c05b1fc4250aedbe707fdCAS |

[16]  P. Sahoo, L. Das, M. Babu, S. Naik, Fuel 2007, 86, 448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKht7fN&md5=d674a617f7a83bf3440dc4ef7daf6c8dCAS |

[17]  H. Raheman, A. Phadatare, Biomass Bioenergy 2004, 27, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFOltbg%3D&md5=8665284dfeb62619d2e7ce43b2a1bfe2CAS |

[18]  M. Canakci, A. Erdil, E. Arcaklioglu, Appl. Energy 2006, 83, 594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Onsb8%3D&md5=1c0607d36fc91d57b5d4501165175a68CAS |

[19]  V. Makareviciene, P. Janulis, Renew. Energy 2003, 28, 2395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltl2hur0%3D&md5=7c7cc9cb8fd18cbd5ad63c8bd3182642CAS |

[20]  J. Pasqualino, D. Montane, J. Salvado, Biomass Bioenergy 2006, 30, 874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSis7jN&md5=bead1c9a18b3c5893275787034dabf88CAS |

[21]  X. Zhang, C. Peterson, D. Reece, G. Moller, R. Haws, Trans. Am. Soc. Agric. Eng. 1998, 41, 1423.
         | 1:CAS:528:DyaK1cXnt1Wgs74%3D&md5=4e4f3f96ab9181367e2f7ae26f43e2daCAS |

[22]  M. Dorado, E. Ballesteros, J. Gomez, F. Lopez, Fuel 2003, 82, 1311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFajsro%3D&md5=f449efa0d8170aafebb72c5074dc5896CAS |

[23]  G. Labeckas, S. Slavinskas, Energy Convers. Manage. 2006, 47, 1954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFCrsL8%3D&md5=7100e91e535059c6600c70b32f0d5fdbCAS |

[24]  A. Monyem, J. Gerpen, Biomass Bioenergy 2001, 20, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs12it7w%3D&md5=2fcb221ec544ea755c7a93c94167a62cCAS |

[25]  L. Turrio-Baldassarri, Sci. Total Environ. 2004, 327, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVektbs%3D&md5=bb4f1b0be7e288c4680a9a4a97c129ccCAS |

[26]  N. Usta, Energy Convers. Manage. 2005, 46, 2373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFyhs70%3D&md5=08570b34cb7ca29fe6c9f2cfd5fc0dc7CAS |

[27]  M. Demirbas, M. Balat, Energy Convers. Manage. 2006, 47, 2371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksleis7o%3D&md5=c7bc5478277bb13b08afed96d4af2182CAS |

[28]  M. Balat, H. Balat, Energy Convers. Manage. 2008, 49, 2727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLvF&md5=723d699d234228307ce33fa60e407463CAS |

[29]  A. Bamgboye, A. Hansen, Int. Agrophys. 2008, 22, 21.
         | 1:CAS:528:DC%2BD1cXls1Cqtbs%3D&md5=e03744e8d15540e747ffceacb4d8171dCAS |

[30]  N. E. M. ElSolh, Master’s Thesis: The Manufacture of Biodiesel from Used Vegetable Oil 2011 (Kassel and Cairo Universities).

[31]  M. Kulkarni, A. Dalai, N. Bakhshi, Bioresour. Technol. 2007, 98, 2027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsF2jsbw%3D&md5=5bd1e57701d8f74e812bd511bbcd73edCAS |

[32]  L. Bautista, G. Vicente, R. Rodríguez, M. Pacheco, Biomass Bioenergy 2009, 33, 862.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVejurk%3D&md5=c4066cb810260e0d055d687059e612a5CAS |

[33]  F. Ferella, G. Mazziotti, I. Di Celso, D. Michelis, V. Stanisci, F. Vegliò, Fuel 2010, 89, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WgsLrI&md5=043db33b1293f2bd1108b740723a22d4CAS |

[34]  M. S. Graboski, R. L. McCormick, Prog. Energ. Combust. 1998, 24, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFeju7w%3D&md5=4c689c9a64cd17370f90e90f4beb9df0CAS |

[35]  M. A. Fazal, A. S. M. A. Haseeb, H. H. Masjuki, Renew. Sustain. Energy Rev. 2011, 15, 1314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWnuw%3D%3D&md5=3fdc9bd8b423f71d6b2c7d68ae6a2affCAS |

[36]  K. Proc, R. Barnitt, R. R. Hayes, M. Ratcliff, R. L. McCormick, L. Ha, H. L. Fang, SAE Powertrain and Fluid Systems Conference and Exhibition Technical Papers 2006, 01, 3253.

[37]  X. Liao, Y. Zhu, S. Wang, Y. Li, Fuel Process. Technol. 2009, 90, 988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVyjsrk%3D&md5=a01ed7ff61d99ee4df4e5b6e9745fcc4CAS |

[38]  Y. C. Sharma, S. Bhaskar, Fuel 2010, 89, 1470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCktL0%3D&md5=c59d530e527c2de103ee1a975a971c02CAS |

[39]  K. Tan, M. Gui, K. Lee, A. Rahman, J. Supercrit. Fluid 2010, 53, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCqu7Y%3D&md5=aa0ba4b97a84003f27fa70dfcef3fa81CAS |

[40]  K. Kolomaznik, M. Barinova, T. Furst, J. Am. Leather Chem. As. 2009, 104, 177.
         | 1:CAS:528:DC%2BD1MXmt1ShsLY%3D&md5=70c9bacd21b28c7c30eaae4bde5f59eeCAS |

[41]  M. Berrios, J. Siles, M. Martin, A. Martin, Fuel 2007, 86, 2383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSktrfE&md5=79fb8f0ae4c7c3eaec7f8124360eaa9eCAS |

[42]  W. Du, Y. Xu, D. Liu, J. Zeng, J. Mol. Catal., B Enzym. 2004, 30, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFymtLk%3D&md5=f363131051d67b38b7ec0f2d8974d02aCAS |

[43]  N. Dizge, B. Keskinler, A. Tanriseven, Biochem. Eng. J. 2009, 44, 220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisl2qtbc%3D&md5=244a66e1fadd1a7b1be84e7d9d22563aCAS |

[44]  B. Freedman, E. Pryde, T. Mounts, J. Am. Oil Chem. Soc. 1984, 61, 1638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtV2rtQ%3D%3D&md5=9605d5d5908236ac9cffab7137b05ae7CAS |

[45]  S. Baroutian, M. Aroua, A. Raman, N. Sulaiman, J. Chem. Eng. Data 2008, 53, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFWgtbk%3D&md5=bcacdde45ee91cca4cb31dec40117ae2CAS |

[46]  D. López, J. Goodwin, D. Bruce, E. Lotero, Appl. Catal. A – Gen. 2005, 295, 97.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  S. Al-Zuhair, Biofuel Bioprod. Bior. 2007, 1, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2nsLrK&md5=184a9f8ac638ae792d1211c7427a218bCAS |

[48]  M. Al-Widyan, A. Al-Shyoukh, Bioresour. Technol. 2002, 85, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Olsbo%3D&md5=8aab3ee1b709fe4618e23f04cec22646CAS |

[49]  M. Di Serio, R. Tesser, M. Dimiccoli, F. Cammarota, M. Nasatasi, E. Santacesaria, J. Mol. Catal. 2005, 239, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVylsbs%3D&md5=785c799ce8fd5cac110c2df0767d4a51CAS |

[50]  E. Lotero, Y. Liu, D. Lopez, K. Suwannakarn, D. Bruce, J. Goodwin, Ind. Eng. Chem. Res. 2005, 44, 5353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVWitA%3D%3D&md5=12fb1964e40bf1dc901f73e3184dbe96CAS |

[51]  S. Zheng, M. Kates, M. Dube, D. McLeana, Biomass Bioenergy 2006, 30, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFWqs7w%3D&md5=d4ea4061a9752c82132185a3fe17e6a4CAS |

[52]  A. Schwab, M. Bagby, B. Freedman, Fuel 1987, 66, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1SntL0%3D&md5=c111e901e1150b3c63a29da338ea7d01CAS |

[53]  M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, Angew. Chem. Int. Ed. 2007, 46, 4434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOlsbg%3D&md5=d0e3122946e1c3c75795b456fcd36fe7CAS |

[54]  J. C. Thompson, B. B. He, Appl. Eng. Agric. 2006, 22, 261.

[55]  A. Kovács, Petroleum and Coal 2011, 53, 91.

[56]  F. Jérôme, J. Barrault, Eur. J. Lipid Sci. Technol. 2011, 113, 118.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  S. Claude, Fett/Lipid 1999, 101, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFOqsLY%3D&md5=2325e8a592150b2606f2c19c1ff06a45CAS |

[58]  F. Langmaier, P. Mokrejs, K. Kolomaznik, M. Mladek, Thermochim. Acta 2008, 469, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSgt7c%3D&md5=5b958b41c1cd57c364cc0dd4861d4c8fCAS |

[59]  P. Mokrejs, F. Langmaier, D. Janacova, M. Mladek, K. Kolomaznik, V. Vasek, J. Therm. Anal. Calorim. 2009, 98, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlalurnM&md5=e4475d6b7658618d1cb934c913b7650cCAS |

[60]  Z. Zhou, X. Li, T. Zeng, W. Hong, Z. Cheng, W. Yuan, Chin. J. Chem. Eng. 2010, 18, 384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFKrurw%3D&md5=d72ee40061bdc32a99566548451e574cCAS |

[61]  M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin, G. J. Suppes, Appl.Catal. A – Gen. 2005, 281, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSitLc%3D&md5=00a5948cc34f4e02ab35a462f8edbbbaCAS |

[62]  D. Slamet, V. Tristantini, M. Ibadurrohman, Int. J. Energ. Res. 2012,
         | Crossref | GoogleScholarGoogle Scholar |

[63]  A. Dibenedetto, A. Angelini, M. Aresta, J. Ethiraj, C. Fragale, F. Nocito, Tetrahedron 2011, 67, 1308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1ymsg%3D%3D&md5=ea9e8259491eba57440558c1d4fdb51cCAS |

[64]  M. Pagliaro, M. Rossi, The Future of Glycerol: New Usages for a Versatile Raw Material 2010 (RSC Publishing: Cambridge, UK).

[65]  W. Suprun, M. Lutecki, T. Haber, H. Papp, J. Mol. Catal. Chem. 2009, 309, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGju74%3D&md5=ca6aee3a3a694e923ed16da1d755212bCAS |

[66]  M. K. Munshi, S. T. Lomate, R. M. Deshpande, V. H. Rane, A. A. Kelkar, J. Chem. Technol. Biotechnol. 2010, 85, 1319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKks7rK&md5=5c0ef45465314dd912eb036f19953d26CAS |

[67]  K. K. Klepacova, D. Mravec, A. Kaszonyi, M. Bajus, Appl. Catal. A – Gen. 2007, 328, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVGqsL0%3D&md5=e4f92ad8aa91c875a2b8807ffeb31c52CAS |

[68]  J. A. Sánchez, D. L. Hernández, J. A. Moreno, F. Mondragón, J. J. Fernández, Appl. Catal. A – Gen. 2011, 405, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  P. S. Reddy, P. Sudarsanam, G. Raju, B. M. Reddy, Catal. Commun. 2010, 11, 1224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaitbjI&md5=105840aeb8b06b0e605bd9f5d3c1d775CAS |

[70]  Y. Nagano, T. Tanaka, J. Jpn. Oil Chem. Soc. 1962, 11, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjsVemsQ%3D%3D&md5=0419ce70ff18d9a64a36fe69a8e42f5aCAS |

[71]  A. F. Alksnis, I. V. Gruzin, Y. A. Surna, J. Polym. Sci. Pol. Chem. 1976, 14, 2631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhslSltA%3D%3D&md5=71381a4c07a4206f4913f84b38824a7dCAS |

[72]  G. H. P. Cho, S. K. Yeong, T. L. Ooi, C. H. Chuah, J. Surfactants Deterg. 2006, 9, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVCgsbo%3D&md5=64b3b7a491ca83eb6031a5c041f81604CAS |

[73]  P. Villeneuve, T. A. Foglia, T. J. Mangos, A. Nuñez, J. Am. Oil Chem. Soc. 1998, 75, 1545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFOktL4%3D&md5=6b5c128aa6883520c76adcb3f7af63fcCAS |

[74]  X. Liao, Y. Zhu, S. G. Wang, Y. Li, Fuel Process. Technol. 2009, 90, 988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVyjsrk%3D&md5=a01ed7ff61d99ee4df4e5b6e9745fcc4CAS |

[75]  Z. C. Hu, Y. G. Zheng, Y. C. Shen, Bioresour. Technol. 2011, 102, 7177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKjsbg%3D&md5=a53c1cf13b038f667b038b18ce4fe900CAS |

[76]  T. Valliyappan, N. N. Bakhshi, A. K. Dalai, Bioresour. Technol. 2008, 99, 4476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2ntr0%3D&md5=95a2ab16a4d2461bde323ab2d6678be9CAS |

[77]  A. May, J. Salvado, C. Torras, D. Montane, Chem. Eng. J. 2010, 160, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyqu74%3D&md5=2bc61534d3fd0aa26939774259dd5087CAS |

[78]  Y. Kato, I. Fujiwara, Y. Asano, J. Mol. Catal. B - Enzym. 2000, 9, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFGrtLY%3D&md5=42e239b5a80803a17d1e8b5dda73d679CAS |

[79]  M. Malyaadri, K. Jagadeeswaraiah, P. S. Sai Prasad, N. Lingaiah, Appl. Catal. A – Gen. 2011, 401, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVGju70%3D&md5=41786ba4e95cdee658e7eb5aea9458adCAS |

[80]  A. Martin, M. Richter, Eur. J. Lipid Sci. Technol. 2011, 113, 100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Omsw%3D%3D&md5=3457e5ce882fa5938f415ac97625a4c4CAS |

[81]  C. Márquez-Alvarez, E. Sastre, J. Pérez Pariente, Top. Catal. 2004, 27, 105.
         | Crossref | GoogleScholarGoogle Scholar |

[82]  M. Aresta, A. Dibenedetto, F. Nocito, C. Pastore, J. Mol. Catal. Chem. 2006, 257, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlGgs7o%3D&md5=2eb4023309b64260ce066c837d48d452CAS |

[83]  G. P. da Silva, M. Mack, J. Contiero, Biotechnol. Adv. 2009, 27, 30.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  J. Švitel, E. Šturdík, J. Ferment. Bioeng. 1994, 78, 351.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  J. Tkac, M. Navratil, E. Sturdik, P. Gemeiner, Enzyme Microb. Technol. 2001, 28, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1egs74%3D&md5=9da1ec3c6847ceaafb33d539cdc70468CAS |

[86]  M. Navrátil, J. Tkáč, J. Švitel, B. Danielsson, E. Šturdík, Process Biochem. 2001, 36, 1045.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  D. Hekmat, R. Bauer, J. Fricke, Bioprocess Biosyst. Eng. 2003, 26, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1yht7g%3D&md5=80257dc8b2cb424e0de6c4c074a2de24CAS |

[88]  M. H. Li, J. Wu, X. Liu, J. P. Lin, D. Z. Wei, H. Chen, Bioresour. Technol. 2010, 101, 8294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslygu74%3D&md5=0a961ffce1017fdd05e46f20b5f92279CAS |

[89]  H. L. Ohrem, H. Voß, Biotechnol. Lett. 1995, 17, 1195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslCnt74%3D&md5=c942263e582dd061b0139d4b15391aabCAS |

[90]  H. J. Wolf, U. S. Patent 4353987 1982.

[91]  H. Habe, T. Fukuoka, D. Kitamoto, K. Sakaki, Appl. Microbiol. Biotechnol. 2009, 81, 1033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFarsr3P&md5=46b631a8b2d5ef49bd3299c950087333CAS |

[92]  P. C. Lee, W. G. Lee, S. Y. Lee, H. N. Chang, Biotechnol. Bioeng. 2001, 72, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVOksQ%3D%3D&md5=a2d17c472c8303a1ea56879b0668c07dCAS |

[93]  A. Bizzini, C. Zhao, A. B. Verneuil, N. Sauvageot, J. C. Giard, Y. Auffray, A. Hartke, J. Bacteriol. 2010, 192, 779.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVOisLc%3D&md5=0cb7e5e33b61ed4314ccdd1263209ea9CAS |

[94]  B. Joseph, S. Mertins, R. Stoll, J. Schar, K. R. Umesha, Q. Luo, S. Muller-Altrock, W. Goebel, J. Bacteriol. 2008, 190, 5412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Wiurw%3D&md5=db461922a847de33b4bfe5a41455c116CAS |

[95]  Y. Zhang, F. Gao, S. P. Zhang, Z. G. Su, G. H. Ma, P. Wang, Bioresour. Technol. 2011, 102, 1837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlWgsQ%3D%3D&md5=a08dd35a645228e5190457f666be259aCAS |

[96]  S. Liebminger, M. Siebenhofer, G. Guebitz, Bioresour. Technol. 2009, 100, 4541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVChtb0%3D&md5=7456373b325f4d93919c65ef1e312179CAS |

[97]  F. P. Van der Zee, F. J. Cervantes, Biotechnol. Adv. 2009, 27, 256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSqu7g%3D&md5=029c6e74fcc8fd1cae72c575f94b3fb0CAS |

[98]  H. Biebl, J. Ind. Microbiol. Biotechnol. 2001, 27, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFajsrs%3D&md5=aa45d8d5b7509a7907775dad8cf5b430CAS |

[99]  B. Dabrock, H. Bahl, G. Gottschalk, Appl. Environ. Microbiol. 1992, 58, 1233.
         | 1:CAS:528:DyaK38XitFaqsLY%3D&md5=d93b627c8ed2ce4e01b58f3754e496fcCAS |

[100]  B. R. Oh, J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, S. Kim, O. Kwon, J. H. Sohn, M. Joe, D. H. Park, C. H. Kim, Process Biochem. 2012, 47, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cit73P&md5=6166cf42dc035e1c1c57f823f72ce1b5CAS |

[101]  Y. Mu, H. Teng, D. J. Zhang, W. Wang, Z. L. Xiu, Biotechnol. Lett. 2006, 28, 1755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitLnI&md5=bc329e40e37029aa97f58f416c668c2fCAS |

[102]  Y. Dharmadi, A. Murarka, R. Gonzalez, Biotechnol. Bioeng. 2006, 94, 821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFGjurg%3D&md5=b61c28e8e390673cf8b23d541bc363b4CAS |

[103]  S. Papanikolaou, P. Ruiz-Sanchez, B. Pariset, F. Blanchard, M. Fick, J. Biotechnol. 2000, 77, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVKgtw%3D%3D&md5=2e52b66a471d6d7b11cb3806b87b7a4bCAS |

[104]  P. Anand, R. Kumar, New Biotechnol. 2012, 29, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFymug%3D%3D&md5=309d82c6bc65540382d099183d99a61eCAS |

[105]  G. N. Jarvis, E. R. B. Moore, J. H. Thiele, J. Appl. Microbiol. 1997, 83, 166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVOrtLY%3D&md5=79dcaf3f550741f16a3630317bfe4d7bCAS |

[106]  D. J. Pyle, R. A. Garcia, Z. Wen, J. Agric. Food Chem. 2008, 56, 3933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslamtrc%3D&md5=a79cb67a535ef4f4b737a87d338d35daCAS |

[107]  T. Ito, Y. Nakashimada, K. Senba, T. Matsui, N. Nishio, J. Biosci. Bioeng. 2005, 100, 260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1alt77L&md5=5f7f97039400979afa2f65d271a54ff5CAS |

[108]  A. Kosmider, W. Białas, P. Kubiak, A. Drozdzynska, K. Czaczyk, Bioresour. Technol. 2012, 105, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVKgtw%3D%3D&md5=a095be9ca69e04e5321f7a0a12f2bffeCAS |

[109]  A. Zhang, S. Yang, Process Biochem. 2009, 44, 1346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhsbvM&md5=65b3514a7350ed3f74774a779594e24fCAS |

[110]  Y. Zhu, J. Li, M. Tan, L. Liu, L. Jiang, J. Sun, P. Lee, G. Du, J. Chen, Bioresour. Technol. 2010, 101, 8902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1eisL4%3D&md5=bb043c059e22a66366146aac71a143c4CAS |

[111]  C. Gätgens, U. Degner, S. Bringer Meyer, U. Herrmann, Appl. Microbiol. Biotechnol. 2007, 76, 553.
         | Crossref | GoogleScholarGoogle Scholar |

[112]  W. C. Ketchie, M. Murayama, R. J. Davis, Top. Catal. 2007, 44, 307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWlsL4%3D&md5=f6740a739b9b9a2947ef61191366d844CAS |

[113]  S. Carrettin, P. McMorn, P. Johnston, K. Griffin, G. J. Hutchings, Chem. Commun. 2002, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitF2ktrk%3D&md5=b71b796dc76c639b66d963ce5dfc180fCAS |

[114]  S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely, G. A. Attard, G. J. Hutchings, Top. Catal. 2004, 27, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntleksw%3D%3D&md5=9c181d8a5c9b7c00446f316c4c7e884eCAS |

[115]  F. Porta, L. Prati, J. Catal. 2004, 224, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVGis7s%3D&md5=c8113ed599fb0c777752fbda50d30cedCAS |

[116]  S. Demirel-Gülen, M. Lucas, P. Claus, Catal. Today 2005, 102–103, 166.
         | Crossref | GoogleScholarGoogle Scholar |

[117]  T. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Cjtb8%3D&md5=64a3a4397880d80ca495e322f454f885CAS |

[118]  P. C. C. Smits, B. F. M. Kuster, K. van der Wiele, H. S. van der Baan, Appl. Catal. 1987, 33, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Ort7g%3D&md5=fa2e1d953b1ffa0c8acf1021be8ac004CAS |

[119]  H. Kimura, K. Tsuto, Appl. Catal. A – Gen. 1993, 96, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlKgtrY%3D&md5=f554c5e88656544bab7a0159dc3ba805CAS |

[120]  R. Garcia, M. Besson, P. Gallezot, Appl. Catal. A – Gen. 1995, 127, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVygurw%3D&md5=654a79f6fe3d854dbc642978885eb559CAS |

[121]  D. Volpe, E. Casado-Rivera, L. Alden, C. Lind, K. Hagerdon, C. Downie, C. Korzeniewski, F. J. DiSalvo, H. D. Abruña, J. Electrochem. Soc. 2004, 151, A971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVKjsLs%3D&md5=eeadd6adc0980e9be114e58e7440ed34CAS |

[122]  C. L. Bianchi, P. Canton, N. Dimitratos, F. Porta, L. Patri, Catal. Today 2005, 102–103, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[123]  W. Hu, B. Lowry, A. Varma, Appl. Catal. B 2011, 106, 123.
         | 1:CAS:528:DC%2BC3MXotlent7Y%3D&md5=e024811451cf774d06f2c3b9fecc7794CAS |

[124]  S. Cornaja, L. Kulikova, V. Serga, V. Kampars, K. Dubencovs, S. Zizkuna, O. Muravjova, European Patent 2332899A1 2011.

[125]  N. Wörz, A. Brandner, P. Claus, J. Phys. Chem. C 2010, 114, 1164.
         | Crossref | GoogleScholarGoogle Scholar |

[126]  W. Hu, D. Knight, B. Lowry, A. Varma, Ind. Eng. Chem. Res. 2010, 49, 10876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslahu74%3D&md5=7d84d4d5fc4ce574d0abd8c3072df7bdCAS |

[127]  E. G. Rodrigues, M. F. R. Pereira, X. Chen, J. J. Delgado, J. J. M. Órfão, J. Catal. 2011, 281, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKjur8%3D&md5=4c5db968ddbb934d45e42842ae50cef3CAS |

[128]  B. N. Zope, R. J. Davis, Green Chem. 2011, 13, 3484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFantLrE&md5=bec7c9a3382887c4fc21abdb547605acCAS |

[129]  M. O. Guerrero-Pérez, J. M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Recent Patents on Chemical Engineering 2010, 2, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[130]  M. Besson, P. Gallezot, Catal. Today 2000, 57, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFensbY%3D&md5=6e74dc3c3c3f764ccecadfdeddc9006dCAS |

[131]  D. Liang, J. Gao, J. H. Wang, P. Chen, Z. Y. Hou, X. M. Zheng, Catal. Commun. 2009, 10, 1586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvV2qsL4%3D&md5=2a566a695b92a68ccee25d22dc027472CAS |

[132]  D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng, Appl. Catal. B 2011, 106, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOnt74%3D&md5=602807ac7a3977c19a7e13d2b13b6046CAS |

[133]  J. Gao, D. Liang, P. Chen, Z. Hou, X. Zheng, Catal. Lett. 2009, 130, 185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFCqsg%3D%3D&md5=217b3e7a9d0db308f06045f49c91633fCAS |

[134]  W. C. Ketchie, Y. L. Fang, M. S. Wong, M. Murayama, R. J. Davis, J. Catal. 2007, 250, 94.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotl2qtrc%3D&md5=c85e87d54c6040c2810499946750565bCAS |

[135]  R. Nie, D. Liang, L. Shen, J. Gao, P. Chen, Z. Hou, Appl. Catal. B 2012, 127, 212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2qtLfK&md5=226b840e56305e9c887a55420ab47159CAS |

[136]  E. G. Rodrigues, M. F. R. Pereira, J. J. Delgado, X. Chen, J. J. M. Órfão, Catal. Commun. 2011, 16, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyjsrbE&md5=82755b8fd78e972c2c552ecc28a7493eCAS |

[137]  E. G. Rodrigues, S. A. C. Carabineiro, X. Chen, J. J. Delgado, J. L. Figueiredo, M. F. R. Pereira, J. J. M. Órfão, Catal. Lett. 2011, 141, 420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGqsbjP&md5=c6ea05ad5ca3cc350f36b0692f9be5e8CAS |

[138]  P. Korovchenko, C. Donze, P. Gallezot, M. Besson, Catal. Today 2007, 121, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVygsbk%3D&md5=d64e43b470fd9e5b259d8437aa2b25abCAS |

[139]  I. M. Kolthoff, A. I. Medalia, J. Am. Chem. Soc. 1949, 71, 3777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXhtF2gsA%3D%3D&md5=612f330774ca3c9490cdd0bfd8790f94CAS |

[140]  P. Manini, P. La Pietra, L. Panzella, A. Napolitano, M. d’Ischia, Carbohydr. Res. 2006, 341, 1828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFymu7k%3D&md5=2a69584cc089834438a0af729a087fbdCAS |

[141]  R. Ciriminna, M. Pagliaro, Adv. Synth. Catal. 2003, 345, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVCgurs%3D&md5=dea0034c415db4f54bc519d42141516fCAS |

[142]  G. B. Shul’pin, Y. N. Kozlov, L. S. Shul’pina, T. V. Strelkova, D. Mandelli, Catal. Lett. 2010, 138, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFOitbs%3D&md5=cab175f062f595789592d8715e3a840eCAS |

[143]  S. Ross, M. Finkelstein, E. J. Rudd, Anodic Oxidation 1975 (Academic Press: New York, NY).

[144]  J. Schnaidt, M. Heinen, D. Denot, Z. Jusys, R. J. Behm, J. Electroanal. Chem. 2011, 661, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CltrzJ&md5=566a35625619443a0cc65e58132ac802CAS |

[145]  J. Chou, Master’s Thesis: Electro-oxidation of Glycerin: Utilization of Glycerin as a Fuel Cell Fuel 2007 (Carnegie Mellon University, Pittsburgh, PA).

[146]  Y. Kwon, S. Lai, P. Rodriguez, M. Koper, J. Am. Chem. Soc. 2011, 133, 6914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVClsr4%3D&md5=cc1a20e8d35e646c9875e692f2964d0bCAS |

[147]  S. W. Xie, S. Chen, Z. Q. Liu, C. W. Xu, Int. J. Electrochem. Sci. 2011, 6, 882.
         | 1:CAS:528:DC%2BC3MXkvVeks7w%3D&md5=734c9ed25c75f7132c1e52535ad0bd07CAS |

[148]  D. Kyriacou, T. Tougas, J. Org. Chem. 1987, 52, 2318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFegu78%3D&md5=6cdcb8fe1779af4fbe12a063cd9b0fd4CAS |

[149]  L. Roquet, E. M. Belgsir, J. M. Léger, C. Lamy, Electrochim. Acta 1994, 39, 2387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislektL8%3D&md5=2120f8f86c9778c5126b024a83307a98CAS |

[150]  W. Lang, U. S. Patent 808095 1905.

[151]  L. M. Chen, Y. L. Chen, S. H. Wang, T. C. Chou, J. Chin. Inst. Chem. Engrs. 2003, 34, 399.
         | 1:CAS:528:DC%2BD3sXnsV2gsLg%3D&md5=19f60c22d739319f7530662393dc8a30CAS |

[152]  M. Ernst, R. Marr, E. Ahn, T. Hilber, M. Siebenhofer, New Products from Partial Oxidation of Glycerol 2004 (Proceedings of the Annual American Institute of Chemical Engineers (AIChE) Meeting Conference).

[153]  S. Kalcheva, P. Iotov, Turk. J. Chem. 1999, 23, 369.
         | 1:CAS:528:DC%2BD3cXhslajtQ%3D%3D&md5=354e9323cf5f5de7c2958ff7f374ce8fCAS |

[154]  F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, J. Schoonman, Sensors 2007, 7, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGhsLo%3D&md5=8e6d4bf6909d1f28af819f1aaa790019CAS |

[155]  A. T. Marshall, R. G. Haverkamp, Int. J. Hydrogen Energy 2008, 33, 4649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyrsrrL&md5=5a89a5344a6d10fb2b20b684434dc59bCAS |

[156]  R. L. Arechederra, S. D. Minteer, Fuel Cells 2009, 9, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt12ktb8%3D&md5=defa7be16bb0f5b9a14aa024e9ab2fd1CAS |

[157]  R. L. Arechederra, S. D. Minteer, Electrochim. Acta 2010, 55, 7679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SntrrM&md5=4d4a9d2a53d2430886d5106741384769CAS |

[158]  M. Nagai, M. Yoshida, H. Tominaga, Electrochim. Acta 2007, 52, 5430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOqsrw%3D&md5=af14a619e31f68d2b95b02335b37806bCAS |

[159]  S. Lee, H. J. Kim, S. M. Choi, M. H. Seo, W. B. Kim, Appl. Catal. A – Gen. 2012, 429–430, 39.

[160]  M. J. Gonzalez, C. T. Hable, M. S. Wrighton, J. Phys. Chem. B 1998, 102, 9881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt12is7o%3D&md5=31c0a7d8cb5c460676748b671a5d5863CAS |

[161]  W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, J. Power Sources 2005, 140, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyrt7nO&md5=0290796a067f3f8214510983135ce1c5CAS |

[162]  J. Zeng, J. Yang, J. Y. Lee, W. Zhou, J. Phys. Chem. B 2006, 110, 24606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gt7jE&md5=101ec1f5edf024f6a42ddc8b340e8826CAS |

[163]  J. Pecha, K. Kolomaznik, M. Barinova, L. Sanek, J. Am. Leather Chem. As. 2012, 107, 312.
         | 1:CAS:528:DC%2BC38XhslWku7bI&md5=fcac1f6ebe05db43a59a1c9c3cd4fcc3CAS |

[164]  L. Guidoni, K. Spiegel, M. Zumstein, U. Röthlisberger, Angew. Chem. Int. Ed. 2004, 43, 3286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2gtLs%3D&md5=88f2b59acb883df70332142eb8053417CAS |

[165]  H. Zhang, G. T. Lountos, C. B. Ching, R. Jiang, Appl. Microbiol. Biotechnol. 2010, 88, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaht7zL&md5=60acab772c42efea8d4f970914c65a3dCAS |

[166]  A. Villa, D. Wang, N. Dimitratos, D. S. Su, V. Trevisan, L. Prati, Catal. Today 2010, 150, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFyjs74%3D&md5=2b13893e3255122345cd720789225c17CAS |

[167]  V. I. Parvulescu, C. Hardacre, Chem. Rev. 2007, 107, 2615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFOkt7c%3D&md5=85bd35462b432890fa74bb9f22983cb4CAS |