Convenient Ambient Temperature Generation of Sulfonyl Radicals
Kerry Gilmore A , Brian Gold A , Ronald J. Clark A and Igor V. Alabugin A BA Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
B Corresponding author. Email: alabugin@chem.fsu.edu
Australian Journal of Chemistry 66(3) 336-340 https://doi.org/10.1071/CH12499
Submitted: 7 November 2012 Accepted: 12 December 2012 Published: 16 January 2013
Abstract
Presented herein is a novel method for the efficient, ambient temperature generation of sulfonyl radicals from aryl and alkyl sulfonylbromides upon autoxidation of triethylborane (Et3B). The resultant radicals were regioselectively trapped via addition to terminal alkynes, generating a secondary vinyl radical that selectively abstracts a Br atom from RSO2Br, yielding the (E)-bromo vinylsulfones. Sensitivity towards Lewis basic groups was observed, presumably due to the disruptive coordination to Et3B before atom-transfer.
References
[1] (a) For general discussion of synthetic utility of radical reactions, see: D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions 1996 (VCH: Weinheim).(b) A. Gansauer, H. Bluhm, Chem. Rev. 2000, 100, 2771.
| Crossref | GoogleScholarGoogle Scholar |
(c) Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001 (Wiley-VCH: Weinheim).
(d) M. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Selected examples of radical cascades for the preparation of conjugated carbon-rich materials: P. Byers, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 9609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVeqsr8%3D&md5=831351676798050cf6123e07a7ecbb4eCAS |
(b) I. V. Alabugin, K. Gilmore, S. Patil, S. M. Manoharan, S. V. Kovalenko, R. J. Clark, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 11535.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) C. Chatgilialoglu, M. P. Bertrand, C. Ferreri, in S-Centered Radicals (Ed. Z. B. Alfassi) 1999, p. 311 (John Wiley & Sons, Inc.: New York, NY).
(b) C. Chatgilialoglu, O. Mozziconacci, M. Tamba, K. Bobrowski, G. Kciuk, M. P. Bertrand, S. Gastaldi, V. I. Timokhin, J. Phys. Chem. A 2012, 116, 7623.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. P. Bertrand, Org. Prep. Proced. Int. 1994, 26, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlCnsrg%3D&md5=e8e15a9189e6b1a01b8d92ebfe4db196CAS |
[5] (a) I. De Riggi, J. M. Surzur, M. P. Bertrand, A. Archavlis, R. Faure, Tetrahedron 1990, 46, 5285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvFKq&md5=b27edfdf680983f057dff5eb496590a7CAS |
(b) T. Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem. 2011, 9, 3151.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Caddick, D. Hamza, S. N. Wadman, Tetrahedron Lett. 1999, 40, 7285.
| Crossref | GoogleScholarGoogle Scholar |
[6] I. V. Alabugin, V. I. Timokhin, J. N. Abrams, M. Manoharan, R. Abrams, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 10984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGis7w%3D&md5=0b8f05261ee529427646a7b778cfa835CAS |
[7] (a) The regioselectivity of the ring closure was intriguing due to the fact that the activation barriers of the competing 4-exo/5-endo-dig closures are within 1–2 kcal mol–1: I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 9534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVymt7s%3D&md5=09247eeb2c7c2d97e13ce216ece15afcCAS |
(b) Similar σ-vinylexo radical yielded mostly 4-exo-dig products: S.-I. Fujiwara, Y. Shimizu, Y. Imahori, M. Toyofuku, T. Shin-ike, N. Kambe, Tetrahedron Lett. 2009, 50, 3628.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) The regioselectivity of the competing 4-exo/5-endo-dig closures is finely balanced: Anionic closures: K. Gilmore, M. Manoharan, J. I.-C. Wu, P. V. R. Schleyer, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 10584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Wqsrw%3D&md5=d75c7a0b3f66977c2d2154fdcc12fc80CAS |
(b) Radical closures: K. Gilmore, I. V. Alabugin, in Unusual Cyclizations: Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 693–728 (John Wiley & Sons Ltd: Chichester).
(c) C. Chatgilialoglu, C. Ferreri, M. Guerra, G. Froudakis, T. Gimisis, J. Am. Chem. Soc. 2002, 124, 10765.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Tamba, K. Dajka, C. Ferreri, K.-D. Asmus, C. Chatgilialoglu, J. Am. Chem. Soc. 2007, 129, 8716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms12gur8%3D&md5=267cc594803660480a7c2e1267509e5dCAS |
[10] (a) Ru catalyst: L. Quebatte, K. Thommes, K. Severin, J. Am. Chem. Soc. 2006, 128, 7440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehtrg%3D&md5=f3b1e2efb5d24b4705fb8b06dddee7ecCAS |
(b) Cu catalyst: J. M. Muñoz-Molina, T. R. Belderrain, P. J. Pérez, Inorg. Chem. 2010, 49, 642.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Amiel, J. Org. Chem. 1971, 36, 3697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XisVGgtQ%3D%3D&md5=21619deea277579eef82accd057f527fCAS |
[12] (a) Sulfonyl cyanides: R. G. Pews, T. E. Evans, Chem. Commun. 1971, 1397.
| 1:CAS:528:DyaE38Xjtl2hsw%3D%3D&md5=3ff52d0000ac3578d583fe340073f9f4CAS |
(b) J.-M. Fang, M.-Y. Chen, Tetrahedron Lett. 1987, 28, 2853.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-M. Fang, M.-Y. Chen, M.-C. Cheng, G.-H. Lee, S.-M. Peng, J. Chem. Research (S) 1989, 272.
(d) Selenosulfonates: T. G. Back, S. Collins, Tetrahedron Lett. 1980, 21, 2213.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. A. Gancarz, J. L. Kice, J. Org. Chem. 1981, 46, 4899.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. A. Gancarz, R. A. Kice, Tetrahedron Lett. 1980, 21, 4155.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. G. Back, S. Collins, J. Org. Chem. 1981, 46, 3249.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) X. Liu, X. Duan, Z. Pan, Y. Han, Y. Liang, Synlett 2005, 11, 1752.
(b) For general Cu-catalysed ATRA reactions requiring reductants, see W. T. Eckenhoff, S. T. Garrity, T. Pinauer, Eur. J. Inorg. Chem. 2008, 563.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. T. Eckenhoff, T. Pinauer, Catal. Rev. 2010, 52, 1.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) Y. Amiel, Tetrahedron Lett. 1971, 12, 661.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Amiel, J. Org. Chem. 1971, 36, 3691.
| Crossref | GoogleScholarGoogle Scholar |
(c) Iron-catalysed: X. Zeng, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 954.
| Crossref | GoogleScholarGoogle Scholar |
[15] I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 12583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WisLo%3D&md5=e65afa1550e6a078b25bdbb49d04f1d4CAS |
[16] (a) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1966, 298.
| 1:CAS:528:DyaF28Xkt1yqs7k%3D&md5=93bfd04e817bc8f7d96b144bf6cd2537CAS |
(b) P. G. Allies, P. B. Brindley, J. Chem. Soc. B 1969, 1126.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1969, 699.
(d) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1969, 91, 3942.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Rensch, H. Friebolin, Chem. Ber. 1977, 110, 2189.
| Crossref | GoogleScholarGoogle Scholar |
(f) For a review on the topic see: C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) K. Nozaki, K. Oshima, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 2547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFCjtLo%3D&md5=5a85daa38b231d496f137cb6ff37f118CAS |
(b) K. Nozaki, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1987, 60, 3465.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron 1989, 45, 923.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Marco-Contelles, Synth. Commun. 1997, 27, 3163.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2356.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVOisL4%3D&md5=382153d30e525e0c0c848ddfb6a7f54bCAS |
(b) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2348.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Ichinose, K. Wakamatsu, K. Nozaki, J.-L. Birbaum, K. Oshima, K. Utimoto, Chem. Lett. 1987, 16, 1647.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) Y. Ichinose, K. Nozaki, K. Wakamatsu, K. Oshima, K. Utimoto, Tetrahedron Lett. 1987, 28, 3709.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt12itb4%3D&md5=0fbad5691d49b69b74be3afaf2f684baCAS |
(b) S. Tanaka, T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshjima, Org. Lett. 2000, 2, 1911.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Taniguchi, K. Oshjima, K. Utimoto, Chem. Lett. 1993, 22, 1751.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84, 1633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGltrbF&md5=b5c108c96be1d6c977d119501cc02981CAS |
(b) A. Kapat, A. Konig, F. Montermini, P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Lapointe, K. Schenk, P. Renaud, Chem. – Eur. J. 2011, 17, 3207.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Luthy, V. Darmency, P. Renaud, Eur. J. Org. Chem. 2011, 547.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Cren, P. Schar, P. Renaud, K. Schenk, J. Org. Chem. 2009, 74, 2942.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. Mantrand, P. Renaud, Tetrahedron 2008, 64, 11860.
| Crossref | GoogleScholarGoogle Scholar |
(i) A.-P. Schaffner, F. Montermini, D. Pozzi, V. Darmency, E. M. Scanlan, P. Renaud, Adv. Synth. Catal. 2008, 350, 1163.
| Crossref | GoogleScholarGoogle Scholar |
(j) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985.
| Crossref | GoogleScholarGoogle Scholar |
(k) L. Chabaud, Y. Landais, P. Renaud, F. Robert, F. Castet, M. Lucarini, K. Schenk, Chem. – Eur. J. 2008, 14, 2744.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) A. G. Davies, B. P. Roberts, Acc. Chem. Res. 1972, 5, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXivVKlsw%3D%3D&md5=8f52d9156e098fbe2fbd58fc65382115CAS |
(b) A. G. Davies, B. P. Roberts, B. R. Sanderson, J. Chem. Soc., Perkin Trans. 2 1973, 626.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) Y. Amiel, J. Org. Chem. 1974, 39, 3867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1CltQ%3D%3D&md5=53ce45f4f43a6c6a3ce03ca46465b5e4CAS |
(b) These compounds also receive increasing attention as radical polymerisation initiators: C. Grigoras, V. Percec, J. Polym. Sci. A 2005, 43, 319.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) S. Caddick, C. L. Sering, S. N. Wadman, Chem. Commun. 1997, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtF2rsLw%3D&md5=29825daccef5760778a194f883b02a44CAS |
(b) Cyclisations of bis-allenes: S.-K. Kang, Y.-H. Ha, D.-H. Kim, Y. Lim, J. Jung, Chem. Commun. 2001, 14, 1306.
| Crossref | GoogleScholarGoogle Scholar |
[25] M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).
[26] The singly occupied orbital can serve as both the electron donor and acceptor. According to NBO analysis, the donor character dominates as follows from the relative energies of n→σ*C-S (17.8 and 9.0 kcal mol–1 for α and β spins, respectively) and σC-S →n (<0.5 and 6.6) interactions (for the adduct of tosyl radical and 1-hexyne). The vinyl radical of the phenylacetylene additions displayed an unusual Lewis structure (hypervalent carbon) which precluded the analysis of hyperconjugative interactions.
[27] For a more general discussion of hyperconjugative effects in chemistry, see: I. V. Alabugin, K. Gilmore, P. Peterson, WIREs Comput. Mol. Sci. 2011, 1, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKjsb8%3D&md5=2facdcdaa0b2339045dbb928897e7a31CAS |
[28] G. W. Kabalka, H. C. Brown, A. Suzuki, S. Honma, A. Arase, M. Itoh, J. Am. Chem. Soc. 1970, 92, 710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXpvFOltg%3D%3D&md5=b68acb766c89eacfd32c05b9d0a3e979CAS |
[29] 1H NMR spectra match literature data. B. Gaspar, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 5758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFKrsr4%3D&md5=0b6fa37b76b388150941756c134c44fbCAS |
[30] Et3B/O2-induced thioyl radical addition to alkenes has also been reported, see: H. Rahaman, M. Ueda, O. Miyata, T. Naito, Org. Lett. 2009, 11, 2651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVGmu7k%3D&md5=a5cd4f55a5567febc010388de2e45e8cCAS |