Kinetic Study of the Radical Azidation with Sulfonyl Azides*
Karin Weidner A and Philippe Renaud A BA University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012 Bern, Switzerland.
B Corresponding author. Email: philippe.renaud@ioc.unibe.ch
Australian Journal of Chemistry 66(3) 341-345 https://doi.org/10.1071/CH12523
Submitted: 25 November 2012 Accepted: 18 December 2012 Published: 25 January 2013
Abstract
Rate constants for the reaction between a secondary alkyl radical and two different sulfonyl azides were determined using bimolecular competing radical reactions. The rates of azidation were determined by competition with hydrogen atom transfer from tris(trimethylsilyl)silane ((TMS)3SiH) of the 4-phenylcyclohexyl radical. 3-Pyridinesulfonyl azide and trifluoromethanesulfonyl azide were found to have rate constants for azidation of 2 × 105 M–1 s–1 and 7 × 105 M–1 s–1 at 80°C, respectively.
References
[1] Organic Azides: Syntheses and Applications (Eds S. Bräse, K. Banert) 2010 (Wiley: Chichester).[2] G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84, 1633.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGltrbF&md5=b5c108c96be1d6c977d119501cc02981CAS |
[3] P. Panchaud, L. Chabaud, Y. Landais, C. Ollivier, P. Renaud, S. Zigmantas, Chem. – Eur. J. 2004, 10, 3606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFejur0%3D&md5=bb4b42976ee7b09cd7761f3cd286b5e1CAS |
[4] C. Ollivier, P. Renaud, J. Am. Chem. Soc. 2001, 123, 4717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFynur0%3D&md5=4567b5e16396fe655b28f196fdca9cf7CAS |
[5] C. Ollivier, P. Renaud, J. Am. Chem. Soc. 2000, 122, 6496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Grsbc%3D&md5=d69fad63e2b3eeb9dc0cd044279a7229CAS |
[6] E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVanurk%3D&md5=4d790a9900072be38a7a31aac03218b9CAS |
[7] A. Kapat, A. Konig, F. Montermini, P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSrtL%2FF&md5=b5e95964cdf3c38e3b3db9c03d0fc6cfCAS |
[8] J. Waser, E. M. Carreira, in Organic Azides: Syntheses and Applications (Eds S. Bräse, K. Banert) 2010, pp. 95–111 (Wiley: Chichester).
[9] B. Gaspar, J. Waser, E. M. Carreira, Synthesis 2007, 3839.
| 1:CAS:528:DC%2BD1cXmtFaksQ%3D%3D&md5=1a92709af1fe92cea4a5528a1d284f5cCAS |
[10] J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2005, 127, 8294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKjtbs%3D&md5=c0318dab5c722cbe43c72b7bd1b34ad1CAS |
[11] P. Renaud, C. Ollivier, P. Panchaud, Angew. Chem. Int. Ed. 2002, 41, 3460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKntLc%3D&md5=8ee11ad19475592cca499f08e340ef1fCAS |
[12] K. Weidner, A. Giroult, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeru7%2FO&md5=6cf3bcf65ffd9174040749bac17ba242CAS |
[13] P. Panchaud, C. Ollivier, P. Renaud, S. Zigmantas, J. Org. Chem. 2004, 69, 2755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVOqurg%3D&md5=d8ed20b04ce40a91551dfb9f2c467e08CAS |
[14] N. Mantrand, P. Renaud, Tetrahedron 2008, 64, 11860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqtrjI&md5=3addebe866654fd1af5e4992fb423d0aCAS |
[15] D. S. Masterson, J. P. Shackleford, Synlett 2007, 1302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yis7s%3D&md5=4f4a676675f7ce89e4587a654bd36933CAS |
[16] M. Newcomb, in Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, Vol. 1 (Basic Concepts and Methodologies), pp. 107–124 (John Wiley & Sons Ltd: Chichester).
[17] H.-S. Dang, B. P. Roberts, J. Chem. Soc., Perkin Trans. 1 1996, 1493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFynsbk%3D&md5=0cc9d7d20cc6c6a5829cf67303705d00CAS |
[18] S. Kim, G. H. Joe, J. Y. Do, J. Am. Chem. Soc. 1994, 116, 5521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVOmur4%3D&md5=4caf79f43f17f3996e7e6a5557fb1839CAS |
[19] L. Benati, G. Bencivenni, R. Leardini, M. Minozzi, D. Nanni, R. Scialpi, P. Spagnolo, G. Zanardi, J. Org. Chem. 2006, 71, 5822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt12mtLo%3D&md5=110b806190c5d875b371493ddd223c86CAS |
[20] C. Chatgilialoglu, Acc. Chem. Res. 1992, 25, 188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslCiu70%3D&md5=16648a54b135f2edd5deee30424dc822CAS |
[21] C. Chatgilialoglu, J. Dickhaut, B. Giese, J. Org. Chem. 1991, 56, 6399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVyjtLo%3D&md5=181ebe7e20975d25a5e2b76addd072f3CAS |
[22] P. Panchaud, P. Renaud, Adv. Synth. Catal. 2004, 346, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVChsLY%3D&md5=f991426a488d1cbce0cb8f6464fa8dc2CAS |
[23] J. Raushel, S. M. Pitram, V. V. Fokin, Org. Lett. 2008, 10, 3385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFKnu70%3D&md5=a6981404c37db10293519bba8a40d74bCAS |
[24] K. Weidner, Ph.D. Thesis, 2010, Universität Bern.
[25] S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. 1996, 25, 407.
| Crossref | GoogleScholarGoogle Scholar |