Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Radical Cascade Protocol for the Synthesis of (5′S)- and (5′R)-5′,8-Cyclo-2′-deoxyguanosine Derivatives*

Michael A. Terzidis A and Chryssostomos Chatgilialoglu A B
+ Author Affiliations
- Author Affiliations

A Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.

B Corresponding author. Email: chrys@isof.cnr.it

Australian Journal of Chemistry 66(3) 330-335 https://doi.org/10.1071/CH12494
Submitted: 2 November 2012  Accepted: 6 December 2012   Published: 4 February 2013

Abstract

The reaction of the appropriately substituted 8-bromo-2′-deoxyguanosine with Bu3SnH/2,2′-azobisisobutyronitrile (AIBN) can be favourably tuned to give the analogous 5′,8-cyclo-2′-deoxyguanosine derivatives in good yields, thus providing easy access to modified nucleosides that constitute an important DNA lesion. A large excess of AIBN is necessary. The creation of the new C5′–C8 bond is a non-chain radical cascade protocol.


References

[1]  J. Cadet, T. Douki, J.-L. Ravanat, Acc. Chem. Res. 2008, 41, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Sns74%3D&md5=924e5a0b4e96ad0d9118e0de299e6ca1CAS |

[2]  J. Cadet, T. Douki, J.-L. Ravanat, R. Wagner, D. Gasparutto, in Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 1319–1344. (Wiley: Chichester).

[3]  N. Belmadoui, F. Boussicault, M. Guerra, J.-L. Ravanat, C. Chatgilialoglu, J. Cadet, Org. Biomol. Chem. 2010, 8, 3211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCjsLs%3D&md5=52fc4c5bbf8f558a7096a29dbb0cb64aCAS |

[4]  C. Chatgilialoglu, C. Ferreri, M. A. Terzidis, Chem. Soc. Rev. 2011, 40, 1368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kisbc%3D&md5=c27ab1ce219bdd32166241383e239a6cCAS |

[5]  B. Aydogan, D. T. Marshall, S. G. Swarts, J. E. Turner, A. J. Boone, N. G. Richards, W. E. Bolch, Radiat. Res. 2002, 157, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlCiug%3D%3D&md5=17b9d5518f4510f86631244df7aa7c01CAS |

[6]  C. Chatgilialoglu, M. D’Angelantonio, G. Kciuk, K. Bobrowski, Chem. Res. Toxicol. 2011, 24, 2200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OrtrrF&md5=44b1b43414cb773a8ed8b2f9c019a761CAS |

[7]  C. Chatgilialoglu, R. Bazzanini, L. B. Jimenez, M. A. Miranda, Chem. Res. Toxicol. 2007, 20, 1820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OhsbvO&md5=5a1d6c2894174011c23efe279bdf7645CAS |

[8]  M. L. Navacchia, C. Chatgilialoglu, P. Montevecchi, J. Org. Chem. 2006, 71, 4445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFGgsLc%3D&md5=9ea8da111e1eede539b57008630acf64CAS |

[9]  A. L. J. Beckwith, V. W. Bowry, W. R. Bowman, E. Mann, J. Parr, J. M. D. Storey, Angew. Chem. Int. Ed. 2004, 43, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. Chatgilialoglu, Chem.–Eur. J. 2008, 14, 2310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOktLw%3D&md5=d18f42c4c5f8eb2d352173a7c1261251CAS |

[11]  M. L. Navacchia, A. Manetto, P. Montevecchi, C. Chatgilialoglu, Eur. J. Org. Chem. 2005, 4640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehtbbL&md5=919f3115a030257d200aadf46b122444CAS |

[12]  A. Baralle, A. Baroudi, M. Daniel, L. Fensterbank, J.-P. Goddard, E. Lacôte, M.-H. Larraufie, G. Maestri, M. Malacria, C. Ollivier, in Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 729–765. (Wiley: Chichester).

[13]  A. Manetto, D. Georganakis, T. Gimisis, L. Leondiadis, P. Mayer, T. Carell, C. Chatgilialoglu, J. Org. Chem. 2007, 72, 3659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegsrc%3D&md5=b6881c9b67a0d7c564343ef76a91a6c2CAS |

[14]  R. B. Zhang, L. A. Eriksson, Chem. Phys. Lett. 2006, 417, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGlsrfM&md5=170c372e5867f212e92420d09053e6efCAS |

[15]  A. Romieu, D. Gasparutto, J. Cadet, Chem. Res. Toxicol. 1999, 12, 412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Kgtbs%3D&md5=fc1ec45ed9cc2450f5c1d83396dd7713CAS |

[16]  J. Wang, B. Yuan, C. Guerrero, R. Bahde, S. Gupta, Y. Wang, Anal. Chem. 2011, 83, 2201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVSit7s%3D&md5=814ab6ccb1cb5fbc4fca03c3a0630e0fCAS |

[17]  J. Wang, C. L. Clauson, P. D. Robbins, L. J. Niedernhofer, Y. Wang, Aging Cell 2012, 11, 714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OrtrnO&md5=12507be6de4d7fe799c57f89400b7d8fCAS |

[18]  C. You, X. Dai, B. Yuan, J. Wang, J. Wang, P. J. Brooks, L. J. Niedernhofer, Y. Wang, Nat. Chem. Biol. 2012, 8, 817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WktLfK&md5=bd12c2d65625327d8cedf932c6d1314dCAS |