Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Soft 2D Layer Porous Coordination Polymers with 1,2-Di(4-pyridyl)ethane

Keisuke Kishida A , Satoshi Horike B C , Kanokwan Kongpatpanich B and Susumu Kitagawa B D E F
+ Author Affiliations
- Author Affiliations

A Research and Development Center, Showa Denko K. K., 2, Oaza, Nakanosu, Oita 870-0189, Japan.

B Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

C Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

D Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.

E Japan Science and Technology Agency, ERATO, Kitagawa Integrated Pores Project, Kyoto Research Park Bldg #3, Shimogyo-ku, Kyoto 600-8815, Japan.

F Corresponding author. Email: kitagawa@icems.kyoto-u.ac.jp

Australian Journal of Chemistry 66(4) 464-469 https://doi.org/10.1071/CH12467
Submitted: 11 October 2012  Accepted: 8 January 2013   Published: 29 January 2013

Abstract

Porous coordination polymer compounds consisting of Zn2+, 1,2-di(4-pyridyl)ethane, and dicarboxylates were synthesised and their crystal structures were determined. These are doubly interpenetrated 2D layer structures, and the flexibility of porous structures is dependent on the substituent group of the dicarboxylate. From gas adsorption studies, distinct adsorption isotherms were observed for CO2, CH4, C2H4, and C2H6 at 195 K and 273 K, respectively.


References

[1]  (a) O. M. Yaghi, H. L. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFKkt70%3D&md5=3ace390ba1d142e379cf1a69027b4a4eCAS |
      (b) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. Férey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) M. P. Suh, H. J. Park, T. K. Prasad, D. W. Lim, Chem. Rev. 2012, 112, 782.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, S. Kitagawa, T. Ishii, H. Matsuzaka, K. Seki, Angew. Chem. Int. Ed. 1999, 38, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsVartA%3D%3D&md5=892cbce4a056b787ad94fa1ba64f4c18CAS |
      (b) H. Chun, D. N. Dybtsev, H. Kim, K. Kim, Chem. – Eur. J. 2005, 11, 3521.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Hijikata, S. Horike, M. Sugimoto, H. Sato, R. Matsuda, S. Kitagawa, Chem. – Eur. J. 2011, 17, 5138.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. Kishida, S. Horike, K. Nakagawa, S. Kitagawa, Chem. Lett. 2012, 41, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. O’Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008, 41, 1782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgsrjF&md5=8bcb3d1cec4adc683295ce3267857319CAS |

[4]  A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |

[5]  (a) S. A. Bourne, J. J. Lu, B. Moulton, M. J. Zaworotko, Chem. Commun. 2001, 861.
      (b) Z. Hulvey, J. D. Furman, S. A. Turner, M. Tang, A. K. Cheetham, Cryst. Growth Des. 2010, 10, 2041.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. F. Ma, L. Y. Wang, J. L. Hu, Y. Y. Wang, G. P. Yang, Cryst. Growth Des. 2009, 9, 5334.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. F. Ma, B. Li, X. Y. Sun, L. Y. Wang, Y. T. Fan, Z. Anorg. Allg. Chem. 2010, 636, 1606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslWhurg%3D&md5=8b7c2094c9703fce1ed2d162acd3fa53CAS |

[7]  S. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, S. Kitagawa, J. Am. Chem. Soc. 2012, 134, 9852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGltbg%3D&md5=32223bcca0f5212fd640c104a188bf6bCAS |

[8]  (a) R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKgtLY%3D&md5=9a7bf18d07c27bb161a442c0ec497019CAS |
      (b) S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Kondo, H. Kajiro, H. Noguchi, L. Carlucci, D. M. Proserpio, G. Ciani, K. Kato, M. Takata, H. Seki, M. Sakamoto, Y. Hattori, F. Okino, K. Maeda, T. Ohba, K. Kaneko, H. Kanoh, J. Am. Chem. Soc. 2011, 133, 10512.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) M. Dinca, J. R. Long, J. Am. Chem. Soc. 2005, 127, 9376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVGksro%3D&md5=17f12bc9a06a4d4c301649dc4b26c1edCAS |
      (b) D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 2004, 126, 32.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, T. L. Thomas, J. Am. Chem. Soc. 1956, 78, 5963.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFWrtb4%3D&md5=1b14769633c0d8afad822601507ba457CAS |

[11]  T. Fukushima, S. Horike, Y. Inubushi, K. Nakagawa, Y. Kubota, M. Takata, S. Kitagawa, Angew. Chem. Int. Ed. 2010, 49, 4820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVCgurg%3D&md5=d1aa6a7994cb3cd9e6b9fc808c11d688CAS |