A Family of Three-Dimensional Molecular Framework Materials Containing the Three-Connecting Ligands 2,4,6-Tris(n′-pyridyl)-1,3,5-triazine: 3-tpt and 4-tpt
Suzanne M. Neville A , Gregory J. Halder B , Keith S. Murray A , Boujemaa Moubaraki A and Cameron J. Kepert C DA School of Chemistry, Monash University, Vic. 3800, Australia.
B X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
C School of Chemistry, The University of Sydney, NSW 2006, Australia.
D Corresponding author. Email: c.kepert@chem.usyd.edu.au
Australian Journal of Chemistry 66(4) 452-463 https://doi.org/10.1071/CH12444
Submitted: 28 September 2012 Accepted: 9 December 2012 Published: 13 February 2013
Abstract
Three-dimensional (3D) framework materials containing the ligands 2,4,6-tris(4′-pyridyl)-1,3,5-triazine (4-tpt) and 2,4,6-tris(3′-pyridyl)-1,3,5-triazine (3-tpt) have been prepared and their structure and magnetic properties investigated. The [MII(NCS)2(py)4] (MII = Fe, Co, py = 3-tpt, and 4-tpt) coordination environments in these materials have been targeted in an effort to prepare high-dimensional coordination polymers which contain spin crossover (SCO) centres. Using FeII, two isotopological cubic 3D materials [Fe(NCS)2(4-tpt)4/3]·n(BzOH,ac) (1a(Bz,ac)) and [Fe(NCS)2(3-tpt)4/3]·n(BzOH,ac) (1b(Bz,ac)) were formed. However, with CoII a different 3D framework topology results, [Co(NCS)2(3-tpt)4/3]·(BzOH,ac) (2(Bz,ac)). Further synthetic variation leads to the isostructural 3D materials trans-[MII(NCS)2(4-tpt)4/3]cis-[MII(NCS)2(4-tpt)2]·n(tce, EtOH) (Fe: 3a(Tce,Et) and Co: 3b(Tce,Et)) which form 3D networks outside Wellsian classification – and for which uniquely both two- and three-connecting modes of 4-tpt are present in the one complex. Despite having the metal coordination environments for which SCO has previously been observed, magnetic susceptibilities of this family of materials reveal a high spin nature.
References
[1] (a) M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymsL0%3D&md5=ac6c074c0f3fb35ea4dcebe05ff5d779CAS |
(b) R. Robson, Dalton Trans. 2008, 5113.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) G. Férey, A. K. Cheetham, Science 1999, 283, 1125.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. O’Keeffe, M. Eddaoudi, H. L. Li, T. Reineke, O. M. Yaghi, J. Sol. St. Chem. 2000, 152, 3.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. M. Yaghi, M. O’Keeffe, M. Kanatzidis, J. Sol. St. Chem. 2000, 152, 1.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Rosseinsky, Micropor. Mesopor. Mater. 2004, 73, 15.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2008 (RSC Publishing: London).
[4] (a) S. L. James, Chem. Soc. Rev. 2003, 32, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFOltLY%3D&md5=b50fd102c5f2247717a30fa90dd0b64eCAS |
(b) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233, 1.
| Crossref | GoogleScholarGoogle Scholar |
[6] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=94a8116bb33e9c1a47605b700bb5046dCAS |
[7] (a) M. B. Duriska, S. M. Neville, B. Moubaraki, J. D. Cashion, G. J. Halder, K. W. Chapman, C. Baldé, J.-F. Létard, K. S. Murray, C. J. Kepert, S. R. Batten, Angew. Chem. Int. Ed. 2009, 48, 2549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlOltLY%3D&md5=f837b7fc8571394f0d5e644a78aba3eaCAS |
(b) O. Kahn, J. Larionova, J. V Yakhmi, Chemistry 1999, 5, 3343.
[8] P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2rsLs%3D&md5=68c40961aef1e38e15da923625ae10bfCAS |
[9] (a) J. A. Real, A. B. Gaspara, M. C. Muñoz, Dalton Trans. 2005, 2062.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWqsL4%3D&md5=a03e1e11536b425ac75098439ef9c87bCAS |
(b) K. S. Murray, C. J. Kepert, Top. Curr. Chem. 2004, 233, 195.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ylu7s%3D&md5=31f259af3d9539a4ecfffb9922a2a006CAS |
[11] (a) O. Kahn, Molecular Magnetism 1993 (VCH: New York, NY).
(b) O. Kahn, C. J. Martinez, Science 1998, 279, 44.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J. G. Haasnoot, Coord. Chem. Rev. 2000, 200–202, 131.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. J. v. Koningsbruggen, Top. Curr. Chem. 2004, 233, 123.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) V. Niel, J. M. Martinez-Agudo, M. C. Munoz, A. B. Gaspar, J. A. Real, Inorg. Chem. 2001, 40, 3838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVChtr8%3D&md5=53daf74c446c41c60d35a29568cb6c66CAS |
(b) V. Niel, M. C. Muñoz, A. B. Gaspar, A. Galet, G. Levchenko, J. A. Real, Chem. Eur. J. 2002, 8, 2446.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Garcia, V. Niel, M. Carmen Munoz, J. A. Real, Top. Curr. Chem. 2004, 229.
(d) M. C. Muñoz, A. B. Gaspar, A. Galet, J. A. Real, Inorg. Chem. 2007, 46, 8182.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. A. Real, A. B. Gaspar, V. Niel, M. C. Munoz, Coord. Chem. Rev. 2003, 236, 121.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed. 1999, 38, 1475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVyksbk%3D&md5=fccb82d241cb461aa58863ec820969f8CAS |
(b) B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins, R. Robson, Chem. Commun. 1996, 1313.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, Chem. Commun. 2000, 1095.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. R. Batten, B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1995, 117, 5385.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. R. Batten, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed. Engl. 1995, 34, 820.
| Crossref | GoogleScholarGoogle Scholar |
[15] B. F. Abrahams, S. R. Batten, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed. Engl. 1996, 35, 1690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1Kgurg%3D&md5=87c1ea668311afb6ede3c06d367ca67cCAS |
[16] K. Biradha, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKntrk%3D&md5=6cc2bd3c109e63691688ab6772b2bda7CAS |
[17] Y. Inokuma, T. Arai, M. Fujita, Nat. Chem. 2010, 2, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmtbvL&md5=cec9518285a4abdca7f250a3017bea44CAS |
[18] (a) M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1ymur0%3D&md5=64ac678f74d6a8166fa690ecfe5cfbd1CAS |
(b) M. Fujita, S.-Y. Yu, T. Kusukawa, H. Funaki, K. Ogura, K. Yamaguchi, Angew. Chem. Int. Ed. 1998, 37, 2082.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Ibukuro, T. Kusukawa, M. Fujita, J. Am. Chem. Soc. 1998, 120, 8561.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Kusukawa, M. Fujita, J. Am. Chem. Soc. 2002, 124, 13576.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 1347.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFeitLc%3D&md5=eb151d14a33adfc182ca554737813cf9CAS |
[20] (a) M. E. Davis, Nature 2002, 417, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Wmurs%3D&md5=a11716bc9536af344cfed7d4c14a40afCAS |
(b) M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320.
| Crossref | GoogleScholarGoogle Scholar |
[21] G. J. Halder, S. M. Neville, C. J. Kepert, CrystEngComm 2005, 7, 266.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Inokuma, S. Yoshioka, M. Fujita, Angew. Chem. Int. Ed. 2010, 49, 8912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtr7O&md5=ebf53de4f189509aa04cb9ebcd9a70f0CAS |
[23] (a) S. Brooker, P. G. Plieger, B. Moubaraki, K. S. Murray, Angew. Chem., Int. Ed. 1999, 38, 408.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFWjsr4%3D&md5=4979ff977c0d5732a45d1212d317649bCAS |
(b) S. Brooker, D. J. de Geest, R. J. Kelly, P. G. Plieger, B. Moubaraki, K. S. Murray, G. B. Jameson, Dalton Trans. 2002, 2080.
[24] SMART, SAINT and XPREP. Area Detector and Data Integration and Reduction Software 1995 (Bruker Analytical Instruments Inc., Madison, Wisconsin, USA).