Direct One-Pot Cobalt(ii) Phthalocyanine Catalyzed Synthesis of N-Substituted Isoindolinones
Vishal Kumar A , Upendra Sharma A , Bikram Singh A and Neeraj Kumar A B
+ Author Affiliations
- Author Affiliations
A Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India.
B Corresponding author. Email: neerajnpp@rediffmail.com
Australian Journal of Chemistry 65(12) 1594-1598 https://doi.org/10.1071/CH12321
Submitted: 5 July 2012 Accepted: 10 September 2012 Published: 24 October 2012
Abstract
A direct one-pot synthetic approach is described wherein cobalt(ii) phthalocyanine (CoPc) catalyzed reductive amination of 2-carboxybenzaldehyde, followed by intramolecular amidation afforded N-substituted isoindolinones. The method used diphenylsilane as reducing agent in ethanol. High chemoselectivity with excellent yield was obtained in most of the studied substrates.
References
[1] (a) C. Riedinger, J. A. Endicott, S. J. Kemp, L. A. Smyth, A. Watson, E. Valeur, B. T. Golding, R. J. Griffin, I. R. Hardcastle, M. E. Noble, J. M. McDonnell, J. Am. Chem. Soc. 2008, 130, 16038.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqu7vN&md5=b82730ba33229eee9160074fa1a12ed2CAS |
(b) J. T. Link, S. Raghavan, S. J. Danishefsky, J. Am. Chem. Soc. 1995, 117, 552.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. L. Comins, S. Schilling, Y. Zhang, Org. Lett. 2005, 7, 95.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. A. Luzzio, A. V. Mayorov, S. S. W. Ng, E. A. Kruger, W. D. Figg, J. Med. Chem. 2003, 46, 3793.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. T. Jiaang, Y. S. Chen, T. Hsu, T. H. Wu, C. H. Chien, C. N. Chang, S. P. Chang, S. J. Lee, X. Chen, Bioorg. Med. Chem. Lett. 2005, 15, 687.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) G. W. Muller, R. Chen, S. Y. Huang, L. G. Corral, L. M. Wong, R. T. Patterson, Y. Chen, G. Kaplan, D. I. Stirling, Bioorg. Med. Chem. Lett. 1999, 9, 1625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVKisbs%3D&md5=7eef96218acbe6e73a565bd4033ab0eeCAS |
(b) U. Ghosh, R. Bhattacharyya, A. Keche, Tetrahedron 2010, 66, 2148.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Takahashi, E. Hirano, T. Kawakami, H. Kitajima, Heterocycles 1996, 43, 2343.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. L. McCarthy, K. Owzar, C. C. Hofmeister, N. Engl. J. Med. 2012, 366, 1770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Gjsro%3D&md5=e9cb77435d445521d8af3667a06c74a9CAS |
[4] J. B. Marriott, M. Westby, S. Cookson, M. Guckian, S. Goodbourn, G. Muller, M. G. Shire, D. Stirling, A. G. Dalgleish, J. Immunol. 1998, 161, 4236.
| 1:CAS:528:DyaK1cXmsF2ju7g%3D&md5=fce778c74374b7a333c50a96b7446ce0CAS |
[5] M. R. Lunn, D. E. Root, A. M. Martino, Chem. Biol. 2004, 11, 1489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWjsbnI&md5=0110f9c42cac68893d2ffa7051f2d397CAS |
[6] M. Uno, H. S. Ban, H. Nakamura, Bioorg. Med. Chem. Lett. 2009, 19, 3166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1eks74%3D&md5=11b156baabdbde0648d4606fcd48af43CAS |
[7] M. H. Norman, D. J. Minick, G. C. Rigdon, J. Med. Chem. 1996, 39, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVaqtLg%3D&md5=7b3f7f80c3eac2e731766674b9ee3547CAS |
[8] S. Das, D. Addis, L. R. Knopke, U. Bentrup, K. Junge, A. Brukner, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 9180.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOmsr%2FL&md5=fe7ccb0e836628fc3fff6bd743287c03CAS |
[9] D. Marosvölgyi-Haskó, A. Takacs, Z. Riedl, L. Kollar, Tetrahedron 2011, 67, 1036.
| Crossref | GoogleScholarGoogle Scholar |
[10] C. S. Cho, W. X. Ren, Tetrahedron Lett. 2009, 50, 2097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1amtbk%3D&md5=e764d36b49dafe74cf99c148e845fcf1CAS |
[11] H. Cao, L. McNamee, H. Alper, Org. Lett. 2008, 10, 5281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqtLvI&md5=6c195d3bd7f1aa22ff4d457fcc1e8d1eCAS |
[12] S. Rousseaux, S. I. Gorelsky, B. K. W. Chung, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 10692.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOrurs%3D&md5=243c72eb95f53dd0421ff8f6da442b76CAS |
[13] F. Marion, J. Coulomb, A. Servais, C. Courillon, L. Fensterbank, M. Malacria, Tetrahedron 2006, 62, 3856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVCksrs%3D&md5=b475700e80696553094d943b4f13c094CAS |
[14] (a) U. Sharma, P. Kumar, N. Kumar, V. Kumar, B. Singh, Adv. Synth. Catal. 2010, 352, 1834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyitbrJ&md5=876b8db3ce8246cde151b25a78afdf49CAS |
(b) U. Sharma, P. K. Verma, N. Kumar, V. Kumar, M. Bala, B. Singh, Chemistry 2011, 17, 5903.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. K. Verma, U. Sharma, N. Kumar, M. Bala, V. Kumar, B. Singh, Catal. Lett. 2012, 142, 907.
| Crossref | GoogleScholarGoogle Scholar |
(d) U. Sharma, N. Kumar, P. K. Verma, V. Kumar, B. Singh, Green Chem. 2012, 14, 2289.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. Kumar, U. Sharma, P. K. Verma, N. Kumar, B. Singh, Adv. Synth. Catal. 2012, 354, 870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWnu70%3D&md5=f0274acc32e1911995bf724ad0f88576CAS |
[16] L. Shi, L. Hu, J. Wang, X. Cao, H. Gu, Org. Lett. 2012, 14, 1876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVSns7w%3D&md5=591549892be1e5ada873c4d717da9db2CAS |
[17] P. G. Jessop, Green Chem. 2011, 13, 1391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2mtLk%3D&md5=9debf0c042c07d85da6baad19afdf27aCAS |
[18] C. Capello, U. Fischer, K. Hungerbuhler, Green Chem. 2007, 9, 927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsF2ltb8%3D&md5=e140da7a6b2e497b41c6b3136ea8e7fbCAS |
[19] K. S. Jung, J. H. Kwon, S. M. Shon, J. P. Ko, J. S. Shin, S. S. Park, J. Mater. Sci. 2004, 39, 723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1emtA%3D%3D&md5=1b2037ed1ee1b9f20653f1173f8a47e6CAS |