CuII Complexes of Isomeric Ligands Derived from 2-Pyridine-carboxaldehyde and m- or p-Xylylenediamine: An Intermolecularly π-Stacked Dinuclear Species and a Trinuclear Circular Helicate that Encapsulates a Chloride Ion
Young Hoon Lee A , Arim Woo A , Mi Seon Won A , Jeong Hwan Cho A , Jack K. Clegg B , Shinya Hayami C , Pierre Thuéry D , Leonard F. Lindoy E and Yang Kim A FA Department of Chemistry & Advanced Materials, Kosin University, 194, Wachi-Ro, Yeongdo-gu, Busan 606-701, South Korea.
B School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
C Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
D CEA, IRAMIS, UMR 3299 CEA/CNRS, SIS2M, LCCEf, Bât.125, 91191 Gif-sur-Yvette, France.
E School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
F Corresponding author. Email: ykim@kosin.ac.kr
Australian Journal of Chemistry 65(12) 1587-1593 https://doi.org/10.1071/CH12368
Submitted: 4 August 2012 Accepted: 7 September 2012 Published: 31 October 2012
Abstract
Di- and trinuclear CuII complexes [Cu2L1(2,2′-bipyridine)2Cl2]Cl2·11H2O and [Cu3(L2)3Cl3]Cl3·1.25MeOH·4H2O incorporating the isomeric Schiff base ligands 1,1′-(1,4-phenylene)bis(N-(pyridin-2-ylmethylene)methanamine) (L1) and 1,1′-(1,4-phenylene)bis(N-(pyridin-2-ylmethylene)methanamine) (L2), each incorporating two separated α-diimine coordination domains, have been synthesised and their X-ray crystal structures and variable temperature magnetic properties determined. The X-ray crystal structure of [Cu2L1(2,2′-bipyridine)2Cl2]Cl2·11H2O shows that each CuII centre is bound to two nitrogen atoms from L1, two from a bipyridine ligand, and a chloride anion. Intramolecular π-stacking interactions are present between the central phenyl ring of L1 and both rings of each bipyridine ligand. The structure of [Cu3(L2)3Cl3]Cl3·1.25MeOH·4H2O shows an unusual trinuclear circular helicate arrangement with approximate C3-symmetry. A chloride anion is encapsulated in the structure being bound by six non-classical hydrogen bond interactions. Variable temperature magnetic susceptibility measurements indicated the presence of weak antiferromagnetic behaviour for [Cu2L1(2,2′-bipyridine)2Cl2]Cl2·11H2O and weak ferromagnetic behaviour for [Cu3(L2)3Cl3]Cl3·1.25MeOH·4H2O.
References
[1] (a) A. Bencini, V. Lippolis, Coord. Chem. Rev. 2010, 254, 2096.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotl2hsrw%3D&md5=5539d966efa48a41ad6f2403e7cafe55CAS |
(b) G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli, Chem. Soc. Rev. 2009, 38, 1690.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Kaes, A. Katz, M. W. Hosseini, Chem. Rev. 2000, 100, 3553.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. G. Sammes, G. Yahioglu, Chem. Soc. Rev. 1994, 23, 327.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) K. Madeja, W. H. Boehmer, T. T. Nguyen, G. Oehme, A. A. El-Saghier, A. Vertes, K. Burger, Z. Anorg. Allg. Chem. 1978, 447, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlajurs%3D&md5=e2eb085b65036813c04a3630205c6a19CAS |
(b) P. E. Figgins, D. H. Busch, J. Phys. Chem. 1961, 65, 2236.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Bähr, H.-G. Doge, Z. Anorg. Allg. Chem. 1957, 292, 119.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. E. Figgins, D. H. Busch, J. Am. Chem. Soc. 1960, 82, 820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXmslWkug%3D%3D&md5=93a83a3c9653d7d2f2f7e0519bb47197CAS |
[4] S. Daniele, M. Martelli, G. Bontempelli, Inorg. Chim. Acta 1991, 179, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1Srurw%3D&md5=edb80f0cac7b967d14c7e85d6a3bbf52CAS |
[5] M. A. Robinson, J. D. Curry, D. H. Busch, Inorg. Chem. 1963, 2, 1178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXns1eq&md5=1b607320a1513ffd9d1e4c949320298fCAS |
[6] M. Schulz, M. Klopfleisch, H. Goerls, M. Kahnes, M. Westerhausen, Inorg. Chim. Acta 2009, 362, 4706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2gs7%2FJ&md5=7746289b041a9422d4938f460936dde2CAS |
[7] M. Maruyama, H. Matsuzawa, Y. Kaizu, Inorg. Chem. 1995, 34, 3232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFWrsL0%3D&md5=e0c0c648f323b8bfb7abc7a03ec5caf9CAS |
[8] V. G. Albano, D. Braga, V. De Felice, A. Panunzi, A. Vitagliano, Organometallics 1987, 6, 517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtVams7o%3D&md5=72bbd24eaba61a8d7158f936e4a5e74eCAS |
[9] (a) J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, Nat. Chem. 2012, 4, 15.See, for example:
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagurzM&md5=8ff1721755eeab6d798de67592597dc2CAS |
(b) W. Meng, B. Breiner, K. Rissanen, J. D. Thoburn, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2011, 50, 3479.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. R. K. Glasson, G. V. Meehan, C. A. Motti, J. K. Clegg, P. Turner, P. Jensen, L. F. Lindoy, Dalton Trans. 2011, 40, 12153.and refs therein.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. J. Archer, C. S. Hawes, G. N. L. Jameson, V. McKee, B. Moubaraki, N. F. Chilton, K. S. Murray, W. Schmitt, P. E. Kruger, Dalton Trans. 2011, 40, 12368.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. R. K. Glasson, J. C. McMurtrie, G. V. Meehan, J. K. Clegg, L. F. Lindoy, C. A. Motti, B. Moubaraki, K. S. Murray, J. D. Cashion, Chem. Sci. 2011, 2, 540.and refs therein.
| Crossref | GoogleScholarGoogle Scholar |
(f) H. B. T. Jeazet, K. Gloe, T. Doert, O. N. Kataeva, A. Jager, G. Geipel, G. Bernhard, B. Buchner, Chem. Commun. 2010, 46, 2373.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. Pelleteret, R. Clérac, C. Mathonière, E. Harté, W. Schmitt, P. E. Kruger, Chem. Commun. 2009, 221.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. R. K. Glasson, L. F. Lindoy, G. V. Meehan, Coord. Chem. Rev. 2008, 252, 940.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. Boiocchi, B. Colasson, L. Fabbrizzi, E. Monti, Inorg. Chim. Acta 2007, 360, 1163.
| Crossref | GoogleScholarGoogle Scholar |
(k) K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304, 1308.
| Crossref | GoogleScholarGoogle Scholar |
(l) M. J. Hannon, L. J. Childs, Supramol. Chem. 2004, 16, 7.and refs therein.
| Crossref | GoogleScholarGoogle Scholar |
(m) M. Schmittel, H. Ammon, V. Kalsani, A. Wiegrefe, C. Michel, Chem. Commun. 2002, 2566.
| Crossref | GoogleScholarGoogle Scholar |
(n) R. A. Bilbeisi, J. K. Clegg, N. Elgrishi, X. D. Hatten, M. Devillard, B. Breiner, P. Mal, J. R. Nitschke, J. Am. Chem. Soc. 2012, 134, 5110.and refs therein.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) Y.-Q. Zheng, D. -Y. Cheng, B.-B. Liu, W.-X. Huang, Dalton Trans. 2011, 40, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFegtr7L&md5=300cfbe7beaab74b1b3cfbd68a9b5f46CAS |
(b) A. Woo, Y. H. Lee, S. Hayami, L. F. Lindoy, P. Thuéry, Y. Kim, J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 409.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Nunez, R. Bastida, L. Lezama, A. Macias, P. Perez-Lourido, L. Valencia, Inorg. Chem. 2011, 50, 5596.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Escuer, G. Vlahopoulou, S. P. Perlepes, M. Font-Bardia, T. Calvet, Dalton Trans. 2011, 40, 225.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Kim, C. Mora, Y. H. Lee, J. K. Clegg, L. F. Lindoy, K. S. Min, P. Thuéry, Y. Kim, Inorg. Chem. Commun. 2010, 13, 1148.
| Crossref | GoogleScholarGoogle Scholar |
(f) V. Mathrubootham, A. W. Addison, K. T. Holman, E. Sinn, L. K. Thompson, Dalton Trans. 2009, 8111.
| Crossref | GoogleScholarGoogle Scholar |
(g) S. Turba, O. Walter, S. Schindler, L. P. Nielsen, A. Hazell, C. J. McKenzie, F. Lloret, J. Cano, M. Julve, Inorg. Chem. 2008, 47, 9612.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Bheemaraju, R. L. Lord, P. Muller, S. Groysman, Organometallics 2012, 31, 2120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVSru70%3D&md5=82d9a3b898301bcd1adc9f6a04ea78f4CAS |
[12] (a) B. Chakraborty, P. Halder, T. K. Paine, Dalton Trans. 2011, 40, 3647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFOqtrg%3D&md5=a53a2b50693e5bc25947ebdac7b68f71CAS |
(b) P. Halder, E. Zangrando, T. K. Paine, Dalton Trans. 2009, 27, 5386.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Chakraborty, P. Munshi, G. K. Lahiri, Polyhedron 1999, 18, 1437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1ykt70%3D&md5=5bb67db5147a1fce61291c796a5d1eceCAS |
[14] M. Haga, K. Koizumi, Inorg. Chim. Acta 1985, 104, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmt1Khu74%3D&md5=2497673278f7cc806e1c628fde7fe2bcCAS |
[15] J. Hamblin, F. Tuna, S. Bunce, L. J. Childs, A. Jackson, W. Errington, N. W. Alcock, H. Nierengarten, A. V. Dorsselaer, E. Leize-Wagner, M. J. Hannon, Chem. – Eur. J. 2007, 13, 9286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVamsLrK&md5=521823d9102e88af78b291d4cdfa6cb5CAS |
[16] H. H. Lu, Y. T. Li, Z. Y. Wu, K. Zheng, C. W. Yan, J. Coord. Chem. 2011, 64, 1360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKltbs%3D&md5=52eebf6fe5e96f73a45997af40f396eaCAS |
[17] F. H. Allen, Acta Crystallogr. B 2002, 58, 380.
| Crossref | GoogleScholarGoogle Scholar |
[18] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=d3f5a6810758b0e5933aa8dc1b85847bCAS |
[19] (a) I. A. Riddell, M. M. J. Smulders, J. K. Clegg, Y. R. Hristova, B. Breiner, J. D. Thoburn, J. R. Nitschke, Nat. Chem. 2012, 4, 751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCgs7jN&md5=b840ac84ed4cc590375cfb0fe361e272CAS |
(b) J. F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, J. Am. Chem. Soc. 2012, 134, 9488.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupont-Gervais, A. Van Dorsselaer, B. Kneisel, D. Fenske, J. Am. Chem. Soc. 1997, 119, 10956.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. Bleaney, K. D. Bowers, Proc. R. Soc. Lond. A Math. Phys. Sci. 1952, 214, 451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XmsVCjsA%3D%3D&md5=641f9ac15a48f72daae45e9f729bd769CAS |
[21] Bruker-Nonius, APEX v2.1, SAINT v.7, and XPREP v.6.14, 2003 (Bruker AXS Inc. Madison, Wisconsin, USA).
[22] CrysAlisPro 2009–2012 (Agilent Technologies Ltd: Yarton, Oxfordshire, UK).
[23] G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software 1999–2007 (University of Göttingen, Germany).
[24] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giocavazzo, A. Guagliardi, A. G. C. Moliterni, G. Polidori, S. Spagna, J. Appl. Cryst. 1999, 32, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=c4e408e0a44f946ddf3ece761180471cCAS |