Oxo-Centred Trimetallic Clusters Supported by Electron-Withdrawing Carboxylates: Highly Inert Character in Ligand Exchange Kinetics of the Dichloroacetate-Bridged Complex [Ru3(μ3-O)(μ-CHCl2COO)6(pyridine)3]
Atsushi Inatomi A , Masaaki Abe A C and Yoshio Hisaeda A B CA Department of Chemistry and Biochemistry, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
B International Research Center for Molecular Systems (IRCMS), Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
C Corresponding authors. Email: mabe@mail.cstm.kyushu-u.ac.jp; yhisatcm@mail.cstm.kyushu-u.ac.jp
Australian Journal of Chemistry 65(12) 1599-1607 https://doi.org/10.1071/CH12378
Submitted: 13 August 2012 Accepted: 8 October 2012 Published: 29 October 2012
Abstract
Two new oxo-centred trinuclear ruthenium clusters supported by six dichloroacetate ligands, [Ru3(μ3-O)(μ-CHCl2COO)6(CH3OH)3]CHCl2COO (1) and [Ru3(μ3-O)(μ-CHCl2COO)6(pyridine)3] (2), have been synthesised and characterised by spectroscopic methods, electrospray ionisation mass spectrometry, single-crystal X-ray diffraction, and cyclic voltammetry. Due to the strong inductive effect of the dichloroacetate ligands, the redox potential of 2 was shifted to the positive side (~1.0 V or more) relative to the acetate analogue [Ru3(μ3-O)(μ-CH3COO)6(pyridine)3], and also the rate of pyridine/pyridine-d5 exchange reaction of 2 in CD3CN was retarded with the rate constant of kex298 K = 1.9 × 10–8 s–1 which is 105-fold smaller than the value for [Ru3(μ3-O)(μ-CH3COO)6(pyridine)3]. Highly positive activation parameters obtained for 2, ΔH‡ = 138 ± 7 kJ mol–1 and ΔS‡ = 71 ± 20 J K–1 mol–1, illustrate a dissociative activation pathway in which rupture of the Ru–N(pyridine) bond is involved in the rate-determining step.
References
[1] F. A. Cotton, R. A. Walton, Multiple Bonds between Metal Atoms 1982 (John Wiley & Sons, Inc.: Malabar, FL).[2] R. D. Cannon, R. P. White, Prog. Inorg. Chem. 1988, 36, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1Onsr0%3D&md5=8cd022e81888bc509a5f7ed497b912edCAS |
[3] L. D. Slep, A. Mijovilovich, W. Meyer-Klaucke, T. Weyhermueller, E. Bill, E. Bothe, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 2003, 125, 15554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWqt74%3D&md5=00c3e564e9ddd30bb7d01d442cb1d5f4CAS |
[4] E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFSlsA%3D%3D&md5=2dba16ee0a57abb639094067fc5a7e7bCAS |
[5] M. Mikuriya, D. Yoshioka, M. Handa, Coord. Chem. Rev. 2006, 250, 2194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWrtbs%3D&md5=c08306c68abceb4084870f48083445d8CAS |
[6] R. Manchanda, Inorg. Chim. Acta 1996, 245, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFWmsbg%3D&md5=6eb6df266ab4134b09b0acc77a77e976CAS |
[7] K. Nakata, A. Nagasawa, Y. Sasaki, T. Ito, Chem. Lett. 1989, 18, 753.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. M. Bond, R. J. H. Clark, D. G. Humphrey, P. Panayiotopoulos, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1998, 1845.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVahu70%3D&md5=dc088e1a5bdbf96ff69f204d106d2489CAS |
[9] H. E. Toma, C. J. Cunha, C. Cipriano, Inorg. Chim. Acta 1988, 154, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVKqu7w%3D&md5=b9d3c5e8d5f663f2962509e494c6255dCAS |
[10] H. Miyasaka, N. Motokawa, R. Atsuumi, H. Kano, Y. Asai, M. Yamashita, Dalton Trans. 2011, 40, 673.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wjtb3P&md5=3939edf08282d272bde8bcfa26e82ddaCAS |
[11] Q.-R. Fang, G.-S. Zhu, M. Xue, Q.-L. Zhang, J.-Y. Sun, X.-D. Guo, S.-L. Qiu, S.-T. Xu, P. Wang, D.-J. Wang, Y. Wei, Chem. – Eur. J. 2006, 12, 3754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFKltbc%3D&md5=1b091eed73828a0043809a7cb5d5980fCAS |
[12] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyns7k%3D&md5=49fa83281737c37b6b6f426dff7545bcCAS |
[13] J. Hansen, H. M. L. Davies, Coord. Chem. Rev. 2008, 252, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislajsr4%3D&md5=64a7d3c12e2542be7926c6445b4da65fCAS |
[14] X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness, M. Schroeder, J. Am. Chem. Soc. 2009, 131, 2159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlOitQ%3D%3D&md5=10cf7ba33a368784e743712a17d2eb81CAS |
[15] T. Fujihara, J. Aonahata, S. Kumakura, A. Nagasawa, K. Murakami, T. Ito, Inorg. Chem. 1998, 37, 3779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlWhsLo%3D&md5=7b0b0d592837d0f2ca419bfd88d1ae5aCAS |
[16] J. R. Houston, P. Yu, W. H. Casey, Inorg. Chem. 2005, 44, 5176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSmt7g%3D&md5=b8193830191aa85194cbd4c49fa50211CAS |
[17] J. R. Houston, M. M. Olmstead, W. H. Casey, Inorg. Chem. 2006, 45, 7799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVSms7w%3D&md5=25f61361de242226abbe451494594c7dCAS |
[18] T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, H. Kido, I. S. Zavarine, T. Richmond, J. Washington, C. P. Kubiak, J. Am. Chem. Soc. 1999, 121, 4625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1ylu7g%3D&md5=a57489c6b4db21080a9e61e717428b27CAS |
[19] C. H. Londergan, C. P. Kubiak, Chem. – Eur. J. 2003, 9, 5962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVWm&md5=7fcc1770b6d706e92661c332caa25714CAS |
[20] S. D. Glover, J. C. Goeltz, B. J. Lear, C. P. Kubiak, Eur. J. Inorg. Chem. 2009, 585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aitbw%3D&md5=47c936f3e85b88954d74fa8536e10707CAS |
[21] S. D. Glover, J. C. Goeltz, B. J. Lear, C. P. Kubiak, Coord. Chem. Rev. 2010, 254, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjsbrM&md5=a408067d92d99d649e6ad590545ad091CAS |
[22] A. Spencer, G. Wilkinson, J. Chem. Soc., Dalton Trans. 1972, 14, 1570.
| Crossref | GoogleScholarGoogle Scholar |
[23] O. Almog, A. Bino, D. Garfinkel-Shweky, Inorg. Chim. Acta 1993, 213, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptl2iug%3D%3D&md5=80a597059c7085377c24bfe7c875b897CAS |
[24] F. A. Cotton, J. G. Norman, Inorg. Chim. Acta 1972, 6, 411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsFOns7s%3D&md5=bbfa15a3b8075e918a827d5cd449440bCAS |
[25] G. Powell, D. T. Richens, A. Bino, Inorg. Chim. Acta 1995, 232, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVCmsL4%3D&md5=07b11e07aa175983c8421aae397193dcCAS |
[26] M. Abe, Y. Sasaki, Y. Yamada, K. Tsukahara, S. Yano, T. Yamaguchi, M. Tominaga, I. Taniguchi, T. Ito, Inorg. Chem. 1996, 35, 6724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gns74%3D&md5=3d35c41d530d60b488e22e4cdd6e4fdaCAS |
[27] K.-i. Ota, H. Sasaki, T. Matsui, T. Hamaguchi, T. Yamaguchi, T. Ito, H. Kido, C. P. Kubiak, Inorg. Chem. 1999, 38, 4070.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Wjurk%3D&md5=172d2117b52dbb6daccb21a47eaf3052CAS |
[28] T. Yamaguchi, N. Imai, T. Ito, C. P. Kubiak, Bull. Chem. Soc. Jpn. 2000, 73, 1205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFOqtro%3D&md5=581ee559b1809f6312e7b502d280b100CAS |
[29] S. B. Marr, R. O. Carvel, D. T. Richens, H.-J. Lee, M. Lane, P. Stravropoulos, Inorg. Chem. 2000, 39, 4630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlaltLY%3D&md5=5d287b82dde49a88bd4f3339c297909bCAS |
[30] I. S. Zavarine, C. P. Kubiak, T. Yamaguchi, K.-i. Ota, T. Matsui, T. Ito, Inorg. Chem. 2000, 39, 2696.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVCmu7o%3D&md5=752a6c7b995092a62ae66c5844b02315CAS |
[31] J.-L. Chen, L.-Y. Zhang, Z.-N. Chen, L.-B. Gao, M. Abe, Y. Sasaki, Inorg. Chem. 2004, 43, 1481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCnuw%3D%3D&md5=6954f2913e7beafde4f106f96b07aaa3CAS |
[32] J. C. Goeltz, E. E. Benson, C. P. Kubiak, J. Phys. Chem. B 2010, 114, 14729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFyrurY%3D&md5=160cc39df0ed255bd2317141611d1f5aCAS |
[33] A. Inatomi, M. Abe, Y. Hisaeda, Eur. J. Inorg. Chem. 2009, 4830.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaisbbP&md5=04f3483b1c9ceacf06ab0197cc2c7b94CAS |
[34] M. Abe, Y. Sasaki, T. Yamaguchi, T. Ito, Bull. Chem. Soc. Jpn. 1992, 65, 1585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVaqt7w%3D&md5=504ae0451eac979d79642ed0c4f72d67CAS |
[35] D. E. Dikarev, B. Li, J. Cluster Sci. 2004, 15, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSitbvF&md5=3af0e350baf41c04b67f2cd3c5c70059CAS |
[36] A. V. Eremin, A. I. Fisher, N. S. Panina, M. Y. Gorlov, A. N. Belyaev, S. A. Simanova, Russ. J. Coord. Chem. 2007, 33, 669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmtrvF&md5=ef80ad2cb62a8fc131b6b51ea190f4c2CAS |
[37] C. Bilgrien, S. Davis, R. S. Drago, J. Am. Chem. Soc. 1987, 109, 3786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFKhurg%3D&md5=23910eedf64b592ded21d4d6ab42ef8dCAS |
[38] S. Davis, R. S. Drago, Inorg. Chem. 1988, 27, 4759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmsVejsLc%3D&md5=7a732ceaafd0218de0330a1bff5db9bfCAS |
[39] Y. Sasaki, M. Abe, Chem. Rec. 2004, 4, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSht7%2FE&md5=5fde8207349d04d45ce9fb2adca3a5cfCAS |
[40] M. Abe, Bull. Jpn. Soc. Coord. Chem. 2011, 58, 20.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Abe, T. Michi, A. Sato, T. Kondo, W. Zhou, S. Ye, K. Uosaki, Y. Sasaki, Angew. Chem. Int. Ed. 2003, 42, 2912.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGmtbs%3D&md5=7704648bb1b20c8b221fdc6f7116b671CAS |
[42] J. A. Baumann, D. J. Salmon, S. T. Wilson, T. J. Meyer, W. E. Hatfield, Inorg. Chem. 1978, 17, 3342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtVKntLw%3D&md5=7cc129af8d033d22678b96ebfa1fd8c6CAS |
[43] M. Abe, A. Mitani, A. Ohsawa, M. Herai, M. Tanaka, Y. Sasaki, Inorg. Chim. Acta 2002, 331, 158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisV2gtbo%3D&md5=38a579eea3d0c8cd4fd7fbbada25de35CAS |
[44] M. Abe, Y. Sasaki, A. Nagasawa, T. Ito, Bull. Chem. Soc. Jpn. 1992, 65, 1411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlCnu7c%3D&md5=a84ea3d25056dec49a7b47e5db46d934CAS |
[45] M. Abe, M. Tanaka, K. Umakoshi, Y. Sasaki, Inorg. Chem. 1999, 38, 4146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVeitbg%3D&md5=a45a8472e3e9bf6c34be2c790687012eCAS |
[46] D. T. Richens, Chem. Rev. 2005, 105, 1961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFartLo%3D&md5=d6d55ec3d25372faa4d5e7205c06a0b1CAS |
[47] D. T. Richens, The Chemistry of Aqua Ions 1997 (John Wiley & Sons, Ltd: Chichester).
[48] T. Fujihara, M. Yasui, J. Ochikoshi, Y. Terasaki, A. Nagasawa, Inorg. React. Mech. 2000, 2, 119.
| 1:CAS:528:DC%2BD3cXmtVWgsrs%3D&md5=21f8ed70d2f8393ac991852a693a7e35CAS |
[49] Y. Sasaki, A. Nagasawa, A. Tokiwa-Yamamoto, T. Ito, Inorg. Chim. Acta 1993, 212, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlequg%3D%3D&md5=17df57411b953940ac203229b37cd5ecCAS |
[50] K. Nakata, A. Nagasawa, N. Soyama, Y. Sasaki, T. Ito, Inorg. Chem. 1991, 30, 1575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Cnsrs%3D&md5=3765aec06a607233918e2b31af108b49CAS |
[51] G. Novitchi, F. Riblet, R. Scopelliti, L. Helm, A. Gulea, A. E. Merbach, Inorg. Chem. 2008, 47, 10587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KmsbnP&md5=b95e9c77368b960462e55e3142d83f48CAS |
[52] G. Novitchi, L. Helm, C. Anson, A. K. Powell, A. E. Merbach, Inorg. Chem. 2011, 50, 10402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylu7%2FF&md5=54d23ec650f7672017fc873c35c7af11CAS |
[53] G. M. Sheldrick, SADABS 1996 (University of Goettingen: Goettingen).
[54] G. M. Sheldrick, SHELXL97 and SHELXS97 1997 (University of Goettingen: Goettingen).