Simulation of Ir(iii) in Aqueous Solution: The Most Inert Ion Hydrate
Philipp A. Pedevilla A , Thomas S. Hofer A , Bernhard R. Randolf A and Bernd M. Rode A BA Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
B Corresponding author. Email: Bernd.M.Rode@uibk.ac.at
Australian Journal of Chemistry 65(12) 1582-1586 https://doi.org/10.1071/CH12303
Submitted: 27 June 2012 Accepted: 31 August 2012 Published: 12 October 2012
Abstract
The ab initio quantum mechanical charge field (QMCF) molecular dynamics (MD) approach at Hartree-Fock level was used to simulate the tripositive iridium ion in aqueous solution, evaluating structure and dynamics of its hydrate complex. The Ir-OH2 force constant was of particular interest because of the observed high inertness of Ir(iii) in aqueous solution. Iridium forms three hydration shells. Six water molecules coordinate the ion in the first hydration shell in a well defined octahedral geometry, and no exchanges took place during the simulation time of 15 ps. The second hydration shell is very flexible, however, with a mean residence time of a water molecule of 3.6 ps. The third shell can be identified only by a slight ordering effect. This investigation classified the Ir-OH2 force constant as the strongest ion-OH2 bond known to date.
References
[1] J. Burgess, Ions in Solution 1986 (Ellis Horwood: Chichester).[2] B. E. Conway, Ionic Hydration in Chemistry and Biophysics 1981 , Studies in Physical and Theoretical Chemistry 12 (Elsevier: Amsterdam).
[3] J. M. G. Barthel, H. Krienke, W. Kunz, Physical Chemistry of Electrolyte Solutions 1998 (Steinkopff: Darmstadt).
[4] Y. Marcus, Ion Solvation 1986 (Wiley: Chichester).
[5] L. Helm, A. E. Merbach, Coord. Chem. Rev. 1999, 187, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFKmt78%3D&md5=57aecb6cfad75297e2e8791f3b3b9dd5CAS |
[6] F. Carrera, F. Torrico, D. T. Richens, A. Munoz-Paez, J. M. Martnez, R. R. Pappalardo, E. S. Marcos, J. Phys. Chem. B 2007, 111, 8223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1CisLw%3D&md5=0e586e2ff206ddbfda427765d6403424CAS |
[7] B. M. Rode, T. S. Hofer, B. R. Randolf, C. F. Schwenk, D. Xenides, V. Vchirawongwin, Theor. Chem. Acc. 2006, 115, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFSisr0%3D&md5=01d3f202fdc4eb88ea9fe88c65aed810CAS |
[8] T. S. Hofer, A. B. Pribil, B. R. Randolf, B. M. Rode, Adv. Quantum Chem. 2010, 59, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFCnsr4%3D&md5=a2c0078f8104171bad78782b2543c4aaCAS |
[9] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtlGksbY%3D&md5=003832c96991405369ba64c5ad3ffc92CAS |
[10] D. J. Adams, E. M. Adams, G. J. Hills, Mol. Phys. 1979, 38, 387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkslehtg%3D%3D&md5=165df7acafc581d3c02c0c947332a3c2CAS |
[11] T. S. Hofer, B. R. Randolf, B. M. Rode, J. Phys. Chem. B 2008, 112, 11726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtValu73O&md5=0c30e537163c513710b50600a2279351CAS |
[12] F. H. Stillinger, A. Rahman, J. Chem. Phys. 1978, 68, 666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtFSrtrk%3D&md5=af423184d5111f0dd441186bbdc94159CAS |
[13] P. Bopp, G. Jansco, K. Heinzinger, Chem. Phys. Lett. 1983, 98, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksF2itL8%3D&md5=aeb8f38d471c35b083a352bac18a8c66CAS |
[14] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel, Chem. Phys. Lett. 1989, 162, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1yrtg%3D%3D&md5=2849f8625401abd3ca044d52cd91820dCAS |
[15] M. Häser, R. Ahlrichs, J. Comput. Chem. 1989, 10, 104.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. S. Mulliken, J. Chem. Phys. 1962, 36, 3428.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xks1KrtL8%3D&md5=35f20db077c8c0f2e323d9850cc8ea7eCAS |
[17] H. J. Dunning, P. J. Hay, in Methods of Electronic Structure Theory (Ed. H. F. Schaefer III) 1977, Vol. 2 (Plenum Press: New York, NY).
[18] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlyju70%3D&md5=8f9af2da7cf0dae42a6d30822d849529CAS |
[19] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLk%3D&md5=ca678ce4f53b69b7ff8818f361835fb5CAS |
[20] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLY%3D&md5=af67348f9366b2f8473b62a1688fb58eCAS |
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision A.1 2009 (Gaussian Inc.: Wallingford, CT).
[22] W. Stevens, M. Krauss, H. Basch, P. G. Jasien, Can. J. Chem. 1992, 70, 612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlOru7g%3D&md5=c28a6bee3943a8320bd66f69c1f1347cCAS |
[23] A. Bhattacharjee, T. S. Hofer, B. M. Rode, Phys. Chem. Chem. Phys. 2008, 10, 6653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCksbbK&md5=3778be115ce95930fb0c2fe81f568ffcCAS |
[24] T. S. Hofer, H. T. Tran, C. F. Schwenk, B. M. Rode, J. Comput. Chem. 2004, 25, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKjtA%3D%3D&md5=90cdde9e651875c0f46ed618bed64b95CAS |
[25] S. T. Moin, T. S. Hofer, A. B. Pribil, B. R. Randolf, B. M. Rode, Inorg. Chem. 2010, 49, 5101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWqtrY%3D&md5=05a1b7da61f32ed289c203e3389431d2CAS |
[26] O. Lutz, QMCF MD Simulations of Lanthanoid Ions 2011, Bachelor Thesis, University of Innsbruck.
[27] O. M. D. Lutz, T. S. Hofer, B. R. Randolf, B. M. Rode, Chem. Phys. Lett. 2012, 539–540, 50.
| Crossref | GoogleScholarGoogle Scholar |
[28] O. M. D. Lutz, T. S. Hofer, B. R. Randolf, A. K. H. Weiss, B. M. Rode, Inorg. Chem. 2012, 51, 6746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVSmsrg%3D&md5=ba526dbc6cc8796f99c44ca491403145CAS |
[29] C. B. Messner, T. S. Hofer, B. R. Randolf, B. M. Rode, Phys. Chem. Chem. Phys. 2011, 13, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamtbjM&md5=995278f65f1099b74b1e4adc4bc5764bCAS |
[30] T. S. Hofer, A. K. H. Weiss, B. R. Randolf, B. M. Rode, Chem. Phys. Lett. 2011, 512, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgtrzE&md5=62fe8e285b2be97bc2555ff27d2b418cCAS |