Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Photocatalytic Hydrogen Evolution Using 9-Phenyl-10-methyl-acridinium Ion Derivatives as Efficient Electron Mediators and Ru-Based Catalysts

Yusuke Yamada A , Kentaro Yano A and Shunichi Fukuzumi A B C
+ Author Affiliations
- Author Affiliations

A Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.

B Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.

C Corresponding author. Email: fukuzumi@chem.eng.osaka-u.ac.jp

Australian Journal of Chemistry 65(12) 1573-1581 https://doi.org/10.1071/CH12294
Submitted: 19 June 2012  Accepted: 1 August 2012   Published: 13 September 2012

Abstract

Photocatalytic hydrogen evolution has been performed by photoirradiation (λ > 420 nm) of a mixed solution of a phthalate buffer and acetonitrile (MeCN) (1 : 1 (v/v)) containing EDTA disodium salt (EDTA), [RuII(bpy)3]2+ (bpy = 2,2′-bipyiridine), 9-phenyl-10-methylacridinium ion (Ph–Acr+–Me), and Pt nanoparticles (PtNPs) as a sacrificial electron donor, a photosensitiser, an electron mediator, and a hydrogen-evolution catalyst, respectively. The hydrogen-evolution rate of the reaction system employing Ph–Acr+–Me as an electron mediator was more than 10 times higher than that employing a conventional electron mediator of methyl viologen. In this reaction system, ruthenium nanoparticles (RuNPs) also act as a hydrogen-evolution catalyst as well as the PtNPs. The immobilization of the efficient electron mediator on the surface of a hydrogen-evolution catalyst is expected to enhance the hydrogen-evolution rate. The methyl group of Ph–Acr+–Me was chemically modified with a carboxy group (Ph–Acr+–CH2COOH) to interact with metal oxide surfaces. In the photocatalytic hydrogen-evolution system using Ph–Acr+–CH2COOH and Pt-loaded ruthenium oxide nanoparticles (Pt/RuO2NPs) as electron donor and hydrogen-evolution catalyst, respectively, the hydrogen-evolution rate was 1.5–2 times faster than the reaction system using Ph–Acr+–Me as an electron mediator. On the other hand, no enhancement in the hydrogen-evolution rate was observed in the reaction system using Ph–Acr+–CH2COOH with PtNPs. Thus, the enhancement of hydrogen-evolution rate originated from the favourable interaction between Ph–Acr+–CH2COOH and RuO2NPs. These results suggest that the use of Ph–Acr+–Me as an electron mediator enables the photocatalytic hydrogen evolution using PtNPs and RuNPs as hydrogen-evolution catalysts, and the chemical modification of Ph–Acr+–Me with a carboxy group paves the way to utilise a supporting catalyst, Pt loaded on a metal oxide, as a hydrogen-evolution catalyst.


References

[1]  S. Dunn, in Encyclopedia of Energy (Ed. C. J. Cleaveland) 2004, Vol. 3, pp. 241–252 (Elsevier/Academic Press: San Diego, CA).

[2]  S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFSht7o%3D&md5=8c1e32a769887e65bac3e7b839d1f63aCAS |

[3]  M. Momirlan, T. N. Veziroglub, Int. J. Hydrogen Energy 2005, 30, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVyltrs%3D&md5=4314fe7c4f372f26cebabd5e7494d473CAS |

[4]  S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energ. Environ. Sci. 2011, 4, 2754.
         | 1:CAS:528:DC%2BC3MXhtFSrs7rJ&md5=e700ff9ff25d531132ae25d4806b2257CAS |

[5]  G. Laurenczy, in Encyclopedia of Catalysis (Ed. I. T. Horvath) 2010 (Wiley-Interscience: Hoboken, NJ). 10.1002/0471227617.EOC111.PUB2

[6]  H. B. Gray, Nat. Chem. 2009, 1, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlSltLk%3D&md5=e8a621748e978149c242c4c8f7353473CAS |

[7]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFymtbrJ&md5=e4252961598780ced30bcd2df19c9437CAS |

[8]  D. G. Nocera, Chem. Soc. Rev. 2009, 38, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtLrK&md5=57e758209f3fe49bf380324ddf373438CAS |

[9]  (a) P. A. Brugger, P. Cuendet, M. Grätzel, J. Am. Chem. Soc. 1981, 103, 2923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktFGrt7s%3D&md5=f9de499da488416ac502bc193097baeaCAS |
      (b) C. K. Grätzel, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7741.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta 1978, 61, 2720.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Kiwi, M. Grätzel, Angew. Chem. Int. Ed. 1979, 18, 624.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Kiwi, M. Grätzel, Nature 1979, 281, 657.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Kiwi, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7214.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Kiwi, K. Kalyanasundaram, M. Grätzel, Sol. Energ. Mater. 1982, 49, 37.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. B. Gray, A. W. Maverick, Science 1981, 214, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xht1Kit7s%3D&md5=959198df0ab30912b149c296c3839f20CAS |

[11]  (a) G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, N. Sutin, J. Am. Chem. Soc. 1979, 101, 1298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1SjtLk%3D&md5=b34b2929be7d4d1d547498fd001f059bCAS |
      (b) S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Sutin, C. Creutz, E. Fujita, Comment. Inorg. Chem. 1997, 19, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) N. Toshima, Pure Appl. Chem. 2000, 72, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVGrtLg%3D&md5=430480db35947975e9da15a2eb9f0605CAS |
      (b) N. Toshima, K. Hirakawa, Polym. J. 1999, 31, 1127.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Toshima, M. Kuriyama, Y. Yamada, H. Hirai, Chem. Lett. 1981, 10, 793.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Toshima, T. Yonezawa, Makromol. Chem. Macromol. Symp. 1992, 59, 281.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. Toshima, T. Yonezawa, New J. Chem. 1998, 22, 1179.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) T. Yonezawa, N. Toshima, J. Mol. Catal. 1993, 83, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1ehtA%3D%3D&md5=f822f25862ed8ebfb6062e6c72b126d0CAS |
      (b) I. Okura, N. Kimthuan, J. Mol. Catal. 1979, 6, 227.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. Okura, M. Takeuchi, N. Kimthuan, Photochem. Photobiol. 1981, 33, 413.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) I. Okura, S. Aono, S. Kusunoki, Inorg. Chim. Acta 1983, 71, 77.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) L. Persaud, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, J. M. White, J. Am. Chem. Soc. 1987, 109, 7309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1Sntro%3D&md5=dd1e44a2fb99ad81bfc6b5215f0e5b26CAS |
      (b) D. L. Jiang, C. K. Choi, K. Honda, W. S. Li, T. Yuzawa, T. Aida, J. Am. Chem. Soc. 2004, 126, 12084.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) Y. Amao, ChemCatChem 2011, 3, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWltLY%3D&md5=ee60ec9ddae6249219590e0b0d3e950cCAS |
      (b) N. Himeshima, Y. Amao, Energy Fuels 2003, 17, 1641.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) S. Rau, B. Schafer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. Gorls, W. Henry, J. G. Vos, Angew. Chem. Int. Ed. 2006, 45, 6215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWhtr7E&md5=fcd5871c61e7a62c67484c6ce30c0cd8CAS |
      (b) S. Tschierlei, M. Karnahl, M. Presselt, B. Dietzek, J. Guthmuller, L. Gonzalez, M. Schmitt, S. Rau, J. Popp, Angew. Chem. Int. Ed. 2010, 49, 3981.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Tschierlei, M. Presselt, C. Kuhnt, A. Yartsev, T. Pascher, V. Sundstrom, M. Karnahl, M. Schwalbe, B. Schafer, S. Rau, M. Schmitt, B. Dietzek, J. Popp, Chem.–Eur. J. 2009, 15, 7678.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) H. Ozawa, M. A. Haga, K. Sakai, J. Am. Chem. Soc. 2006, 128, 4926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVeltrc%3D&md5=91f6e2e62cd4308c078fb79eecc0e2a0CAS |
      (b) H. Ozawa, M. Kobayashi, B. Balan, S. Masaoka, K. Sakai, Chem. Asian J. 2010, 5, 1860.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Ozawa, K. Sakai, Chem. Commun. 2011, 47, 2227.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Ozawa, Y. Yokoyama, M. Haga, K. Sakai, Dalton Trans. 2007, 1197.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Tanaka, S. Masaoka, K. Yamauchi, M. Annaka, K. Sakai, Dalton Trans. 2010, 39, 11218.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) M. Wang, Y. Na, M. Gorlov, L. Sun, Dalton Trans. 2009, 6458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Kls7w%3D&md5=666b951b88c75e160cf394478930c125CAS |
      (b) P. Zhang, M. Wang, J. Dong, X. Li, F. Wang, L. Wu, L. Sun, J. Phys. Chem. C 2010, 114, 15868.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Zhang, M. Wang, C. Li, X. Li, J. Dong, L. Sun, Chem. Commun. 2010, 46, 8806.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Zhang, M. Wang, Y. Na, X. Li, Y. Jiang, L. Sun, Dalton Trans. 2010, 39, 1204.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. Gao, J. Sun, M. Li, T. Åkermark, K. Romare, L. Sun, B. Åkermark, Eur. J. Inorg. Chem. 2011, 1100.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. Grätzel, Acc. Chem. Res. 1981, 14, 376.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) E. Amouyal, B. Zidler, P. Keller, A. Moradpour, Chem. Phys. Lett. 1980, 74, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpvFSh&md5=e3a3f9afb54e47e0b7333aa55e327d4eCAS |
      (b) E. Amouyal, B. Zidler, Isr. J. Chem. 1982, 22, 117.

[21]  P. Keller, A. Moradpour, E. Amouyal, B. Zidler, J. Mol. Catal. 1981, 12, 261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlslOlt78%3D&md5=0ab55d8db5c30dfcb262ca9d30ffc544CAS |

[22]  C. Königstein, J. Photochem. Photobiol. A 1995, 90, 141.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. V. Krishnan, N. Sutin, J. Am. Chem. Soc. 1981, 103, 2141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitVSks78%3D&md5=8ffd40f1f936828020e23a1911e3ed21CAS |

[24]  C. V. Krishnan, B. S. Brunschwig, C. Creutz, N. Sutin, J. Am. Chem. Soc. 1985, 107, 2005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsVSlsr4%3D&md5=83abaea5d230510f2477e1de2d3e5a74CAS |

[25]  J. Hawecker, J.-M. Lehn, R. Ziessel, Nouv. J. Chim. 1983, 7, 271.
         | 1:CAS:528:DyaL3sXkvFSqurc%3D&md5=f14061a421e2bf97bc3f3a4acb3adcbeCAS |

[26]  J.-M. Lehn, J. P. Sauvage, Nouv. J. Chim. 1977, 1, 449.
         | 1:CAS:528:DyaE1cXht1yqtbw%3D&md5=cfb565534828e7e5266257df624bdddbCAS |

[27]  G. M. Brown, S. F. Chan, C. Creutz, H. A. Schwarz, N. Sutin, J. Am. Chem. Soc. 1979, 101, 7638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtlGqsQ%3D%3D&md5=494dfe2fbdbd4862e5dff6a6250c64ecCAS |

[28]  S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXptFSrsw%3D%3D&md5=974e7667fd6e1b60fbd8a09b258fa744CAS |

[29]  M. Kirch, J.-M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979, 62, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFSjsb8%3D&md5=6ebb3989a35226d0b8423f4c4daaad7bCAS |

[30]  S. Harinipriya, M. V. Sangaranarayanan, Langmuir 2002, 18, 5572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOrt7Y%3D&md5=d94a3feb1c91f8df26b0f3214c617e74CAS |

[31]  (a) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 1060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCl&md5=2e760cb181a75ad9647cb4acd687ea8eCAS |
      (b) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 16774.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res. 2009, 42, 1995.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) P. W. Du, K. Knowles, R. Eisenberg, J. Am. Chem. Soc. 2008, 130, 12576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCmsrrM&md5=03e715766bfb818e764ac0bb5cd45349CAS |
      (b) T. Lazarides, T. Mccormick, P. W. Du, G. G. Luo, B. Lindley, R. Eisenberg, J. Am. Chem. Soc. 2009, 131, 9192.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  X. L. Hu, B. S. Brunschwig, J. C. Peters, J. Am. Chem. Soc. 2007, 129, 8988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFKqs7k%3D&md5=0659bf80ba4b3baef045539ec41268efCAS |

[34]  (a) B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Ojs78%3D&md5=a392799592c8013377d3ee5cc90c35f7CAS |
      (b) H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  L. Loy, E. E. Wolf, Sol. Energy 1985, 34, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlt1Knt7w%3D&md5=e95494acaadffcb718709d875bb96785CAS |

[36]  (a) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 16136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFygu7vM&md5=bac9c3c5e6ad980876a482e6b8960e43CAS |
      (b) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, Energ. Environ. Sci. 2012, 5, 6111.

[37]  H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chem.–Eur. J. 2011, 17, 2777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFajtrk%3D&md5=2f361838970130cc704306509ff8e2b7CAS |

[38]  E. Amouyal, P. Keller, A. Moradpour, J. Chem. Soc., Chem. Commun. 1980, 1019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjtlGkug%3D%3D&md5=c5a7b4a4bfa3eeb85806b842e8e1c6d8CAS |

[39]  J. M. Kleijn, Colloid Polym. Sci. 1987, 265, 1105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVWktL8%3D&md5=7f89a60ed9b93e41a4ef9b242edec33fCAS |

[40]  E. Amouyal, Sol. Energy Mater. Sol. Cells 1995, 38, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVehu7c%3D&md5=1b8702e259a5fffaaa282b6cc0ea6146CAS |

[41]  (a) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006, 2018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWlt7s%3D&md5=0b57b88e5adb07e34f9cc5701bb393aaCAS |
      (b) K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 10168.
         | Crossref | GoogleScholarGoogle Scholar |

[42]     (a) R. W. G. Wyckoff, Crystal Structures 1963, 2nd edn (Interscience Publishers: New York, NY).
      (b) W. H. Baur, A. A. Khan, Acta Crystallogr. B 1971, 27, 2133.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  S. Fukuzumi, R. Hanazaki, H. Kotani, K. Ohkubo, J. Am. Chem. Soc. 2010, 132, 11002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVCitLc%3D&md5=4ef102abfb0f453939607d07b2c06527CAS |

[44]  H. Kotani, K. Ohkubo, Y. Takai, S. Fukuzumi, J. Phys. Chem. B 2006, 110, 24047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOhtLzI&md5=db592517b22ca109dc2678d104dd0b49CAS |