PolyPEGylation of Protein using Semitelechelic and Mid-functional Poly(PEGMA)s synthesized by RAFT polymerization
Yingkai Liu A B , Mei Li B , Dengxu Wang A , Jinshui Yao B , Jianxing Shen B , Weiliang Liu B , Shengyu Feng A E , Lei Tao C E and Thomas P. Davis D EA Key Laboratory of Special Functional Aggregated Materials, Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
B Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and Engineering, Shandong Polytechnic University, Jinan 250353, PR China.
C Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
D Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
E Corresponding authors. Email: fsy@sdu.edu.cn; leitao@mail.tinghua.edu.cn; t.davis@unsw.edu.au
Australian Journal of Chemistry 64(12) 1602-1610 https://doi.org/10.1071/CH11312
Submitted: 26 July 2011 Accepted: 5 October 2011 Published: 8 December 2011
Abstract
A series of well defined semitelechelic and mid-functionalized poly(poly(ethylene glycol) methyl ether methacrylate)s (poly(PEGMA)s) were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization using thiazolidine-2-thione-functionalized chain transfer agents (CTAs). The thiazolidine-2-thione group was located either at the end or in the middle of polymer chains depending on the different structural CTAs. All polymers were fully analyzed by 1H NMR spectroscopy and GPC, confirming their well-defined structures, such as predesigned molecular weights, narrow polydispersity indices, and high yield chain-end or chain-middle functionalization. The thiazolidine-2-thione functionality located at the end of or at the middle of the polymer chains can react with amine residues on protein surfaces, forming protein-polymer conjugates via amide linkages. The bioactivity of protein conjugates were subsequently tested using micrococcus lysodeikticus cell as substitute. The protein conjugations from the mid-functionalized polymer remained much more protein bioactivity comparing to their semitelechelic counterpart with similar molecular weights, indicating the steric hindrance of the mid-functionalized poly(PEGMA)s lead to the better selective conjugation to protein. The number of polymer chains on the protein surface was additionally evaluated by TNBS analysis, exhibiting that there are less mid-functionalized poly(PEGMA)s linked on the protein surface than the semitelechelic polymers, also supporting the hypothesis that the steric hindrance from branch-structural polymers results in the better reaction selectivity. This synthetic methodology is suitable for universal proteins, seeking a balance between the protein bioactivity and the protein protection by the covalent linkage with polymer, and exhibits promising potential for pharmaceutical protein conjugation.
References
[1] M. J. Roberts, M. D. Bentley, J. M. Harris, Adv. Drug Deliv. Rev. 2002, 54, 459.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFKiu7g%3D&md5=2e1543993573fcb653507c63404b64bcCAS |
[2] F. M. Veronese, J. M. Harris, Adv. Drug Deliv. Rev. 2008, 60, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyit7vM&md5=9c768d05f522e9d8e411fa73a7f77c90CAS |
[3] J. M. Harris, R. B. Chess, Nat. Rev. Drug Discov. 2003, 2, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKrtLs%3D&md5=b202ad2772ecfd2ad185aae0f1a711e9CAS |
[4] A. Abuchowski, T. Vanes, N. C. Palczuk, F. F. Davis, J. Biol. Chem. 1977, 252, 3578.
| 1:CAS:528:DyaE2sXksV2it7c%3D&md5=7382c65da7b318770628038147904547CAS |
[5] F. M. Veronese, G. Pasut, Drug Discov. Today 2005, 10, 1451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFers7rF&md5=bf4631f92e45bff0ca72af82a3463c0aCAS |
[6] R. Duncan, Nat. Rev. Drug Discov. 2003, 2, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslamtb0%3D&md5=e7e18bf3d68f2e71dbe0af86b51ef438CAS |
[7] V. Gaberc-Porekar, I. Zore, B. Podobnik, V. Menart, Curr. Opin. Drug Discov. Devel. 2008, 11, 242.
| 1:CAS:528:DC%2BD1cXivFektr8%3D&md5=710978d5d51f37a7affa194493d0d79cCAS |
[8] C. S. Fishburn, J. Pharm. Sci. 2008, 97, 4167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sgt7rI&md5=9463be5f4972cf2bc22862edff37e361CAS |
[9] M. Lanthier, R. Behrman, C. Nardinelli, Nat. Rev. Drug Discov. 2008, 7, 733.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgtL7P&md5=dd0a1d032866ab729642f64c4a4ef4f8CAS |
[10] F. M. Veronese, A. Mero, BioDrugs 2008, 22, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ejurjK&md5=a9575030207c30f0331689fc405535b8CAS |
[11] S. J. Bell, C. M. Fam, E. A. Chlipala, S. J. Carlson, J. I. Lee, M. S. Rosendahl, D. H. Doherty, G. N. Cox, Bioconjug. Chem. 2008, 19, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaktbzO&md5=01832e9147a47b8358f324080c90cca9CAS |
[12] E. M. Kopecky, S. Greinstetter, I. Pabinger, A. Buchacher, J. Romisch, A. Jungbauer, Biotechnol. Bioeng. 2006, 93, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Kmur0%3D&md5=b4a3f6af51f1a262dede4ea15f320577CAS |
[13] M. S. Rosendahl, D. H. Doherty, D. J. Smith, S. J. Carlson, E. A. Chlipala, G. N. Cox, Bioconjug. Chem. 2005, 16, 200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt12i&md5=8cbb98ece6faa61c15dd0bf590ef7d79CAS |
[14] D. C. Dieterich, A. J. Link, J. Graumann, D. A. Tirrell, E. M. Schuman, Proc. Natl. Acad. Sci. USA 2006, 103, 9482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOnsrg%3D&md5=d496abd4cbf947bc4153901ba813c520CAS |
[15] L. Tao, J. Q. Liu, J. T. Xu, T. P. Davis, Org. Biomol. Chem. 2009, 7, 3481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsl2it74%3D&md5=b2fcce12769ec4bd611cebb77d08155eCAS |
[16] L. Tao, J. Q. Liu, J. T. Xu, T. P. Davis, Chem. Commun. (Camb.) 2009, 6560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlalur3I&md5=346c17221374ac5a67d04e2e55c8d07cCAS |
[17] L. Tao, J. Q. Liu, T. P. Davis, Biomacromolecules 2009, 10, 2847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ns7fI&md5=dc2e57bb5583883278b5660641e99fbeCAS |
[18] A. Guiotto, M. Canevari, M. Pozzobon, S. Moro, P. Orsolini, F. M. Veronese, Bioorg. Med. Chem. 2004, 12, 5031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGgsr4%3D&md5=585b068978d4cc4b62d4d7c401d96f41CAS |
[19] C. Monfardini, O. Schiavon, P. Caliceti, M. Morpurgo, J. M. Harris, F. M. Veronese, Bioconjug. Chem. 1995, 6, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2rtbk%3D&md5=5a8e8ed43653d4aa1d0d9c85af2ddf42CAS |
[20] Y. Nojima, Y. Suzuki, K. Iguchi, T. Shiga, A. Iwata, T. Fujimoto, K. Yoshida, H. Shimizu, T. Takeuchi, A. Sato, Bioconjug. Chem. 2008, 19, 2253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2lsr3F&md5=1383eb5cdd09aa01565cb4850652e278CAS |
[21] C. W. Chang, E. Bays, L. Tao, S. N. S. Alconcel, H. D. Maynard, Chem. Commun. (Camb.) 2009, 3580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFaqs7w%3D&md5=f7f8bcba9c311ba6e2400732543aa856CAS |
[22] C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Q. Liu, S. Perrier, Chem. Rev. 2009, 109, 5402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtbvP&md5=03f00b318fe3884646eb8208e89e6c28CAS |
[23] J. Liu, V. Bulmus, C. Barner-Kowollik, M. H. Stenzel, T. P. Davis, Macromol. Rapid Commun. 2007, 28, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyiur8%3D&md5=e9573705996be5126c7f5edad63dd948CAS |
[24] J. T. Xu, C. Boyer, V. Bulmus, T. P. Davis, J. Polym. Sci. [A1] 2009, 47, 4302.
| 1:CAS:528:DC%2BD1MXpt1Clt7Y%3D&md5=23a8cd3d1f64f5228ab0b6516a98aa33CAS |
[25] K. L. Heredia, H. D. Maynard, Org. Biomol. Chem. 2007, 5, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlaitLnM&md5=174220cc021deaaf82a6842057246e89CAS |
[26] J. Nicolas, G. Mantovani, D. M. Haddleton, Macromol. Rapid Commun. 2007, 28, 1083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKnur4%3D&md5=ba9d54c69707b53583b0fc6684f8ec67CAS |
[27] B. Le Droumaguet, J. Nicolas, Polym. Chem 2010, 1, 563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOhtb7J&md5=6376ac5f97e6e8d52e157f3c6f28132dCAS |
[28] R. B. Greenwald, A. Pendri, A. Martinez, C. Gilbert, P. Bradley, Bioconjug. Chem. 1996, 7, 638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1Cmurc%3D&md5=9751150f558249442631d2ceef0794a2CAS |
[29] R. B. Greenwald, J. Yang, H. Zhao, C. D. Conover, S. Lee, D. Filpula, Bioconjug. Chem. 2003, 14, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsF2ksLY%3D&md5=3beb76b7339855ecd8edf09274b58faaCAS |
[30] M. Chenal, C. Boursier, Y. Guillaneuf, M. Taverna, P. Couvreur, J. Nicolas, Polym. Chem 2011, 2, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOkt7o%3D&md5=71ac2105b93149fa0379034f476e8affCAS |
[31] H. Ihre, A. Hult, J. M. J. Frechet, I. Gitsov, Macromolecules 1998, 31, 4061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKns78%3D&md5=bcd9fb70a110e2491bb11f3b4df2b2dbCAS |
[32] A. J. Convertine, D. S. W. Benoit, C. L. Duvall, A. S. Hoffman, P. S. Stayton, J. Control. Release 2009, 133, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsF2ktQ%3D%3D&md5=bd3e7c58db8d476e17175d081ef03f23CAS |
[33] D. Shugar, Biochim. Biophys. Acta 1952, 8, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XjvFakuw%3D%3D&md5=0b6af998a69f0d4f36cd5a9070690287CAS |
[34] T. Masuda, N. Ide, N. Kitabatake, Chem. Senses 2005, 30, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yjt74%3D&md5=be8818e21a67059bc48098d636cd9befCAS |