Metal Binding by Water-Soluble Polychelates and Implications for Agriculture
Garry W. Warrender A and Robert G. Gilbert A BA The University of Queensland, Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, Qld 4072, Australia.
B Corresponding author. Email: b.gilbert@uq.edu.au
Australian Journal of Chemistry 64(12) 1593-1601 https://doi.org/10.1071/CH11256
Submitted: 23 June 2011 Accepted: 10 October 2011 Published: 16 November 2011
Abstract
Means are developed to improve the metal ion delivery/remediation potential of polyacrylamides (PAMs), by incorporation of the co-monomer N-acryloyl-4-aminosalicylic acid. The polymers were synthesized by solution and inverse emulsion polymerization. The chemical binding of two soil micronutrients, Cu2+ and Fe3+, were investigated using atomic absorption spectroscopy. The modified PAM had an enhanced affinity for metal ions compared with conventional PAMs. This modified PAM has the potential as a delivery tool of plant micronutrients and stabilizers for agricultural soils undergoing intense irrigation. The same polymers may also provide a detoxifying effect in these applications where some micronutrient sources may be in excess and detrimental to productive agriculture.
References
[1] A. K. Bhardwaj, R. A. McLaughlin, I. Shainberg, G. J. Levy, Soil Sci. Soc. Am. J. 2009, 73, 910.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFylsLg%3D&md5=ccc99a449248bbc51d66e30f8c1a3234CAS |
[2] A. K. Bhardwaj, I. Shainberg, D. Goldstein, D. N. Warrington, G. J. Levy, Soil Sci. Soc. Am. J. 2007, 71, 406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVSru7g%3D&md5=9e715168d1cc86cabfe116538f31235bCAS |
[3] G. J. Levy, I. Rapp, Aust. J. Soil Res. 1999, 37, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlShtbg%3D&md5=907228ba925270674786fbdb5bc4cdceCAS |
[4] A. I. Mamedov, S. Beckmann, C. Huang, G. J. Levy, Soil Sci. Soc. Am. J. 2007, 71, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ru7vO&md5=2b88f93c3adb908a0df118e1d8b53d98CAS |
[5] A. I. Mamedov, I. Shainberg, L. E. Wagner, D. N. Warrington, G. J. Levy, Aust. J. Soil Res. 2009, 47, 788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCht77J&md5=7005c5763c80f8a9f91ea5cafde00124CAS |
[6] A. I. Mamedov, L. E. Wagner, C. Huang, L. D. Norton, G. J. Levy, Soil Sci. Soc. Am. J. 2010, 74, 1720.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmsrrJ&md5=8da55f826ade55e26c71235e72034439CAS |
[7] I. Shainberg, D. Goldstein, A. I. Mamedov, G. J. Levy, Soil Sci. Soc. Am. J. 2011, 75, 1090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFyltrg%3D&md5=fa0bfba31e7d18f157ce28f481b8d99dCAS |
[8] D. Sirjacobs, I. Shainberg, I. Rapp, G. J. Levy, Soil Sci. Soc. Am. J. 2000, 64, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2hsrg%3D&md5=9dc7fb74b5b8d11f7781d793ebe6be99CAS |
[9] Z. Tang, T. Lei, J. Yu, I. Shainberg, A. I. Mamedov, M. Ben-Hur, G. J. Levy, Soil Sci. Soc. Am. J. 2006, 70, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1Cqsrs%3D&md5=8c323679a84bbb787909fe274dc82660CAS |
[10] J. Yu, T. Lei, I. Shainberg, A. I. Mamedov, G. J. Levy, Soil Sci. Soc. Am. J. 2003, 67, 630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslChsbc%3D&md5=2debaee7a0bc738ff5acad3881f481efCAS |
[11] R. D. Lentz, R. E. Sojka, Agron. J. 2009, 101, 305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt12rsLk%3D&md5=057d721918f08179d6f85a748db5904eCAS |
[12] R. E. Sojka, D. L. Bjorneberg, J. A. Entry, R. D. Lentz, W. J. Orts, Adv. Agron. 2007, 92, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlyjsbg%3D&md5=d840a49b1a19d5ddfb495fd0f2f96119CAS |
[13] C. O. Nebo, L. O. Asuquo, C. K. Nworu, M. C. Fuerstenau, J. Disper. Sci. Technol. 1996, 17, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XovVSlsw%3D%3D&md5=1f1770564ea4dc18bff6757ce4571b67CAS |
[14] C. O. Nebo, H. Nwajiobi, N. A. G. Aneke, M. C. Fuerstenau, J. Disper. Sci. Technol. 1996, 17, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XovVSlsg%3D%3D&md5=1876008346536f3461b25bb686633518CAS |
[15] B. P. Singh, R. Singh, Sep. Sci. Technol. 1997, 32, 993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1ajsr8%3D&md5=545085680e76feafc6ea25d1e85f7621CAS |
[16] P. K. Weissenborn, Int. J. Miner. Process. 1996, 47, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xltlyjsbk%3D&md5=8d13aa21172138fc9e44c6ee7a680059CAS |
[17] E.-G. A. A. Abd, A. M. El-Roudi, E. M. Soliman, M. R. Mahmoud, J. Chin. Chem. Soc.-Taip. 1987, 34, 291.
[18] F. Bonaccorsl, P. Albonico, R. Pappa, T. P. Lockhart, Int. J. Polym. Mater. 1992, 18, 165.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. F. Kennedy, S. A. Barker, J. Epton, G. R. Kennedy, J. Chem. Soc., Perkin Trans. 1 1973, 488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXht1CqsLg%3D&md5=e5b28e5942007598e7172b2cb32b58e7CAS |
[20] J. F. Kennedy, S. A. Barker, A. W. Nicol, A. Hawkins, J. Chem. Soc., Dalton Trans. 1973, 1129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlGmtrs%3D&md5=2fa05029b172a59524cea6c88a43e3bcCAS |
[21] J. F. Kennedy, J. Epton, Carbohydr. Res. 1973, 27, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhs1Sjs7s%3D&md5=03d83259ed33f82dff036890008bee3dCAS |
[22] J. F. Kennedy, J. Epton, G. R. Kennedy, Antimicrob. Agents Chemother. 1973, 3, 29.
| 1:CAS:528:DyaE3sXktVSltb4%3D&md5=a1914bf9211c246b9b63d105c5c4e7bcCAS |
[23] K. Patel, B. Suthar, J. Inst. Chem. 1987, 59, 272.
| 1:CAS:528:DyaL1cXhvVOmu70%3D&md5=56c708e8698181e665db9f4ae7a3582eCAS |
[24] A. L. R. Merce, A. S. Mangrich, B. Szpoganicz, N. M. Levy, J. Felcman, J. Braz. Chem. Soc. 1996, 7, 239.
| 1:CAS:528:DyaK28Xnt1elu7g%3D&md5=4f7d1da62316098a4b5e42471c1bbfcaCAS |
[25] J. Suh, H. S. Park, J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 1197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislCltbk%3D&md5=7a5407b99f3b802358ff13987878aa88CAS |
[26] B. L. Rivas, S. A. Pooley, M. Soto, K. E. Geckeler, J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 2461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVKlsbo%3D&md5=73c2b0b2b7aecb01bf39e96217df9f49CAS |
[27] R. Subramanian, P. Natarajan, J. Polym. Sci., Part A; Polym. Chem. 1984, 22, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVCjsro%3D&md5=cc135a064eeb4ed154bc3b3c124786c0CAS |
[28] F. Candau, C. Holtzscherer, J. Chim. Phys. 1989, 86, 2095.
| 1:CAS:528:DyaK3cXpvFemsw%3D%3D&md5=32f0a09113e09977b57ea606c608499eCAS |
[29] F. Candau, Y. S. Leong, R. M. Fitch, J. Polym. Sci., Part A: Polym. Chem. 1985, 23, 193.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXnvFertQ%3D%3D&md5=b4a306572c4255918519e19497de2baeCAS |
[30] R. A. Cave, S. A. Seabrook, M. J. Gidley, R. G. Gilbert, Biomacromolecules 2009, 10, 2245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFKlsLw%3D&md5=1f5ea1065ceb9abf44ff27b97f54f682CAS |
[31] J. P. Boisvert, A. Malgat, I. Pochard, C. Daneault, Polymer 2002, 43, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFGhsrc%3D&md5=bbb3433300cd91fe3b02ef3ce0c720dfCAS |
[32] J. Leja, Surface Chemistry of Froth Flotation 1982 (Plenum: New York, NY).
[33] A. W. Trochimczuk, J. Jezierska, Polymer 2000, 41, 3463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFGgtQ%3D%3D&md5=7447c5987176b2ccb5ba2dbdf4c5dba7CAS |
[34] J. Francois, C. Heitz, M. M. Mestdagh, Polymer 1997, 38, 5321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlGhsb4%3D&md5=e0645b8d50bce024f1e956347a395bdeCAS |
[35] K. Kruczala, S. Schlick, J. Phys. Chem. B 1999, 103, 1934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlCqt7s%3D&md5=736f50d577062bac6a27e4ba3bb4aec3CAS |