Comparative Study of the Adsorption of Aromatic Pollutants onto TiO2 (100) Surface via Molecular Simulation
Hilal S. Wahab A C and Andreas D. Koutselos BA Al-Nahrain University, College of Science, Department of Chemistry, PO Box 64090, Al-Jadriya, Baghdad, Iraq.
B National and Kapodistrian University of Athens, Chemistry Department, Zografou 15771, Athens, Greece.
C Corresponding author. Email: hswahab@gmail.com
Australian Journal of Chemistry 64(12) 1611-1616 https://doi.org/10.1071/CH10288
Submitted: 3 August 2010 Accepted: 13 October 2011 Published: 18 November 2011
Abstract
The adsorption mode of benzoic acid onto the anatase TiO2 (100) surface has been studied through the semi-empirical self-consistent field molecular orbital method MSINDO and is compared with previously determined modes of four aromatic compounds: chlorobenzene, aniline, p-chlorophenol and nitrobenzene. The simulation results reveal that aniline and p-chlorophenol molecules are adsorbed with their aromatic ring positioned parallel to the surface although they are linked to a surface lattice titanium atom via the amino nitrogen and phenolic oxygen respectively. In contrast, chlorobenzene, nitrobenzene and benzoic acid are found in perpendicular configurations and they are attached to the surface via the chlorine and oxygen atoms of the NO2 and COOH groups respectively. The calculated substrate–surface interaction energy is influenced by the degree of basicity of the lone pair of the donating atoms, the number of linkages between the substrate and the surface and, further, the hydrogen bonding between the acidic hydrogen and lattice oxygen atom. The computed vibrational density of states for these adsorbed organic pollutants is in reasonably good agreement with available experimental data and previous theoretical results.
References
[1] D. S. Bhatkhande, S. B. Sawant, J. C. Schouten, V. G. Pangarkar, J. Chem. Technol. Biotechnol. 2004, 79, 354.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFChurw%3D&md5=6ae731e5f01a1010fcab02c0cb56925eCAS |
[2] X. Xu, H. Zhou, P. He, D. Wang, Chemosphere 2005, 58, 1135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFalsQ%3D%3D&md5=4936d11c3a355bea6996523410e817d9CAS |
[3] A. Kumar, N. Mathur, J. Colloid Interface Sci. 2006, 300, 244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aisb0%3D&md5=124c637617e5f0ff3dfcda4a0374f844CAS |
[4] D. S. Bhatkhande, S. P. Kamble, S. B. Sawant, V. G. Pangarkar, Chem. Eng. J. 2004, 102, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGkur4%3D&md5=61c781066824a7fa0f3277f5f1c5d34aCAS |
[5] V. Subramanian, V. G. Pangarkar, A. A. Beenackers, Clean Prod. Process. 2000, 2, 149.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Tanaka, K. Padarmpole, T. Hisanaga, Water Res. 2000, 34, 327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1eguw%3D%3D&md5=3788d25b8bbeb348090e4344c340a734CAS |
[7] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=5ecb2d204bd9315dcf22b324900b315fCAS |
[8] M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmvFOnsw%3D%3D&md5=c3d4d034391f4bf7fe44d67ee46ee384CAS |
[9] N. Serpone, E. Pelizzetti, Photocatalysis: Fundamentals and Applications 1989 (John Willey & Sons: New York, NY).
[10] D. Robert, S. Parra, C. Pulgarin, A. Krzton, J. V. Weber, Appl. Surf. Sci. 2000, 167, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Wqtr4%3D&md5=35dc9d96e37a0ed7e206e90007d221f8CAS |
[11] P. V. Kamat, R. Huehn, R. Nicolaescu, J. Phys. Chem. B 2002, 106, 788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVGjs74%3D&md5=b7d79cfc27c3bcb3c229548c9ae171acCAS |
[12] D. Vasudevan, A. T. Stone, Environ. Sci. Technol. 1996, 30, 1604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVKgt7g%3D&md5=f31cda0ba009b0757eb59be78d00728fCAS |
[13] S. T. Martin, J. M. Keselman, D. S. Park, N. S. Lewis, M. R. Hoffmann, Environ. Sci. Technol. 1996, 30, 2535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOiurg%3D&md5=d95968d67ec06722ae41bc51fd596017CAS |
[14] S. Kim, W. Choi, J. Phys. Chem. B 2005, 109, 5143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFWgsL4%3D&md5=a76becbcb0dc86134353f41d44956cd1CAS |
[15] L. M. Canle, J. A. Santaballa, E. Vulliet, J. Photochem. Photobiol. A 2005, 175, 192.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Ogawa, J. Phys. Org. Chem. 1991, 4, 346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsVeis7s%3D&md5=604fe2bdfe46d0ba174c0f69e96f04f6CAS |
[17] M. Hügül, I. Boz, R. Apak, J. Hazard. Mater. 1999, 64, 313.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, A. Di Paola, E. G. Lopez, V. Loddo, G. Marci, L. Palmesano, M. Schiavello, Catal. Today 2007, 122, 118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvF2qsr8%3D&md5=f2e9d0aa1e1ff68f40d2ed72de1fe95bCAS |
[19] H. S. Wahab, T. Bredow, S. M. Aliwi, Chem. Phys. 2008, 353, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ju77M&md5=d4991aacd5b49406864182f5ca4429b8CAS |
[20] H. S. Wahab, A. D. Koutselos, Chem. Phys. 2009, 358, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2itrY%3D&md5=32200cb5a44db865454814e66bd39475CAS |
[21] H. S. Wahab, T. Bredow, S. M. Aliwi, J. Mol. Struct. THEOCHEM 2008, 863, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVais70%3D&md5=d5b80fdeed5500d6570cdcdb9857e45eCAS |
[22] H. S. Wahab, A. D. Koutselos, J. Mol. Model. 2009, 15, 1237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslGjtLs%3D&md5=b3f63be29781f760c3425e4d56dbd376CAS |
[23] B. Ahlswede, K. Jug, J. Comput. Chem. 1999, 20, 563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFyku7k%3D&md5=31d1ee53d93f94de8470549592aaee06CAS |
[24] B. Ahlswede, K. Jug, J. Comput. Chem. 1999, 20, 572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFyku7Y%3D&md5=c3dea5105cbca4b44fd12eec58a1f3c1CAS |
[25] T. Bredow, G. Geudtner, K. Jug, J. Comput. Chem. 2001, 22, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyqtr0%3D&md5=ffa2cf7572209f3119d1f8d91e8252f1CAS |
[26] M. C. Zerner, Mol. Phys. 1972, 23, 963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xks1Oqs70%3D&md5=cc7410f5fcd072fdc2fef6246d593e77CAS |
[27] T. Homann, T. Bredow, K. Jug, Surf. Sci. 2004, 555, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislylt70%3D&md5=76bd3dad9fe8ba9405cd406f5f96d33fCAS |
[28] V. M. Bermudez, Surf. Sci. 2010, 604, 706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVyku74%3D&md5=3431348c1bf3f61661225d35c9003559CAS |
[29] G. Martra, Appl. Catal. A-Gen. 2000, 200, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Cku7g%3D&md5=01c0b1ad50edf3029b01d238e36fd257CAS |
[30] H. S. Wahab, T. Bredow, S. M. Aliwi, Chem. Phys. 2008, 354, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeru7nJ&md5=f1276e9e7e89e60574b76029ef3d1d1bCAS |
[31] S. Tanaka, U. K. Saha, Water Sci. Technol. 1994, 30, 47.
| 1:CAS:528:DyaK2MXlsVOnsLg%3D&md5=7641b79b413447982f744757fcf96c14CAS |
[32] J. Lichtenberger, M. D. Amiridis, J. Catal. 2004, 223, 296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislOmt78%3D&md5=eca34ad41e86fce06a77af2db26eefb6CAS |
[33] J. C. Evans, Spectrochim. Acta [A] 1960, 16, 428.
| 1:CAS:528:DyaF3cXptVSnuw%3D%3D&md5=449498aefa6010415dbb47ec22a710deCAS |
[34] W. B. Tzeng, K. Narayanan, K. C. Shieh, C. C. Tung, J. Mol. Struct. THEOCHEM 1998, 428, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Oqsrw%3D&md5=e758d0bed9bbe33cf41cbe43e826dbf6CAS |
[35] U. Stafford, K. A. Gray, P. V. Kamat, A. Varma, Chem. Phys. Lett. 1993, 205, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisFCht7s%3D&md5=a4a908f8f51bcf4ec4ebc36f03def97aCAS |
[36] V. A. Shlyapochnikov, L. S. Khaikin, O. E. Grikina, C. W. Bock, L. V. Vilkov, J. Mol. Struct. 1994, 326, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSjtr8%3D&md5=5ef11a30f0b92792ea6c7e5352464450CAS |
[37] D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers, Water Res. 2003, 37, 1223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgu7o%3D&md5=bba56fdfd35099483e7148ff6bb14b1cCAS |
[38] E. F. Sheka, E. A. Nikitina, V. A. Zayets, I. Ya. Ginzburg, J. Schoonman, Phys. Solid State 2007, 49, 154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFGitA%3D%3D&md5=5757fec7d844f1d3ab09b13e2a441149CAS |
[39] M. A. Henderson, Surf. Sci. Rep. 2002, 46, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlKksLw%3D&md5=660683964cf9c5985883cc4d6845f8c4CAS |
[40] V. M. Bermudez, J. Phys. Chem. C 2010, 114, 3063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVygsrg%3D&md5=bbba50829a8013c432d2d02262e83426CAS |
[41] K. D. Dobson, A. J. McQuillan, Spectrochim. Acta [A] 2000, 56, 557.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3lt1Cntg%3D%3D&md5=5d810f4160651a2d151be1e2d9ce298fCAS |