Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Comparing Self-Assembling and Covalent Fluorescent Boronolectins for the Detection of Free Sialic Acid

Stephan M. Levonis A , Milton J. Kiefel A and Todd A. Houston A B
+ Author Affiliations
- Author Affiliations

A Institute for Glycomics, Gold Coast Campus, Griffith University, Qld 4222, Australia.

B Corresponding author. Email: t.houston@griffith.edu.au

Australian Journal of Chemistry 64(11) 1454-1457 https://doi.org/10.1071/CH11296
Submitted: 17 July 2011  Accepted: 9 September 2011   Published: 20 October 2011

Abstract

A self-assembling fluorescence sensor with boronic acid functionalities was tested for binding selectivity to the monosaccharide, sialic acid. Working from a previously reported system, a self-assembling system could form an imine in situ that enables a conjugated fluorophore to display a measurable change in fluorescence in the presence of monosaccharide. However, further examination showed that free sugars give a similar fluorescence response to just the m-aminophenylboronic acid moiety on its own. Still, such a self-assembly method may be applicable to cell surface saccharide sensing as aldehydes and ketones are noticeably absent on most cells’ exteriors. The original covalent receptor appears best suited for the detection of free sialic acid.


References

[1]  T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  H. S. Mader, O. S. Wolfbeis,, Microchim. Acta 2008, 162, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Takeuchi, T. Mizuno, H. Shinmori, M. Nakashima, S. Shinkai, Tetrahedron 1996, 52, 1195.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. D. James, H. Shinmori, S. Shinkai, Chem. Commun. 1997, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  T. Zhang, E. V. Anslyn, Org. Lett. 2006, 8, 1649.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Arimori, L. I. Bosch, C. J. Ward, T. D. James, Tetrahedron Lett. 2001, 42, 4553.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. M. Levonis, M. J. Kiefel, T. A. Houston, Chem. Commun. 2009, 2278.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  F. J. Krolikowski, K. Reuter, T. P. Waalkes, S. M. Sieber, R. H. Adamson, Pharmacology 1976, 14, 47.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. Laganà, B. Pardo-Martínez, A. Marino, G. Fago, M. Bizzarri, Clin. Chim. Acta 1995, 243, 165.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. Raval, L. Parekh, D. Patel, F. Jha, R. Sainger, P. Patel, Indian J. Clin. Biochem. 2004, 19, 60.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Carter, N. H. Martin, J. Clin. Pathol. 1962, 15, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. Laganà, B. Pardo-Martínez, A. Marino, G. Fago, M. Bizzarri, Anticancer Res. 1995, 15, 2341.

[13]  (a) M. Takeuchi, M. Yamamoto, S. Shinkai, J. Chem. Soc. Chem. Commun. 1997, 1731.For early work on boron-based sialic acid receptors, see:
      (b) S. Patterson, B. D. Smith, R. E. Taylor, Tetrahedron Lett. 1998, 39, 3111.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Yang, P. T. Lewis, J. O. Escobedo, N. N. St. Luce, W. D. Treleaven, R. L. Cook, R. M. Strongin, Collect. Czech. Chem. Commun. 2004, 69, 1282.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. A. Houston, S. M. Levonis, M. J. Kiefel, Aust. J. Chem. 2007, 60, 811.Reviewed in

[14]  S. Jin, Y. Cheng, S. Reid, M. Li, B. Wang, Med. Res. Rev. 2010, 30, 171.

[15]  S.-L. Zheng, N. Lin, S. Reid, S. Wang, Tetrahedron 2007, 63, 5427.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. Yoshino, N. Kano, T. Kawashima, Chem. Commun. 2007, 559.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  F. W. D. Rost, Fluorescence Microscopy 1995 (Cambridge University Press: Cambridge, UK).

[18]  Mass spectrometry data indicates the presence of a didehydrated 1:1 complex between 3 and Neu5Ac (LR-ESMS+ m/z 411) expected to be similar in structure to 5 as well as a 1:2 complex (m/z 718).

[19]  J. Yoon, A. W. Czarnik, J. Am. Chem. Soc. 1992, 114, 5874.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) A. Pal, M. Berube, D. G. Hall, A. Pal, M. Berube, D. G. Hall, ChemBioChem 11, 954.For references on boron-based receptors for cell-surface carbohydrates, see: references therein and associated commentary: ,2010
      (b) F. Mancin, E. Rampazzo, P. Tecilla, U. Tonellato, Chem.–Eur. J. 2006, 12, 1844.For a review on self-assembled fluorescent chemosensors, see:
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. J. Agard, C. R. Bertozzi, Acc. Chem. Res. 2009, 42, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. Asano, H. Nakamura, Y. Uehara, Y. Yamamoto, ChemBioChem 2004, 5, 483.
         | Crossref | GoogleScholarGoogle Scholar |