Enantioselective Synthesis of Arylglycine Derivatives by Asymmetric Addition of Arylboronic Acids to Imines
Yasunori Yamamoto A B , Yoshinori Takahashi A , Kazunori Kurihara A and Norio Miyaura AA Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
B Corresponding author. Email: yasuyama@eng.hokudai.ac.jp
Australian Journal of Chemistry 64(11) 1447-1453 https://doi.org/10.1071/CH11225
Submitted: 2 June 2011 Accepted: 24 August 2011 Published: 16 November 2011
Abstract
Rhodium-catalyzed enantioselective 1,2-additions of arylboronic acids to N-tosyl furanylimine and lithium 5-methyl-2-furanyltriolborate to N-tosyl arylimines giving aryl(2-furanyl)methanamines were developed for enantioselective synthesis of arylglycines by ozonolysis of the furyl ring. A chiral N-linked C2-symmetric bidentate phosphoramidite (N-Me-BIPAM) achieved high enantioselectivities up to 99 % ee. For the direct synthesis of arylglycines, the asymmetric addition of arylboronic acids to ethyl N-p-methoxyphenyl iminoester was carried out at 80°C in dioxane in the presence of Rh(acac)(C2H4)2/(R,R)-N-Me-BIPAM. The reaction gave optically active arylglycines in up to 99 % ee.
References
[1] R. M. Williams, J. A. Hendrix, Chem. Rev. 1992, 92, 889.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvFSks7g%3D&md5=fd0fcdbc36cf8c2d15f56a667dcb476eCAS |
[2] H. Gröger, Chem. Rev. 2003, 103, 2795.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. Dömling, Chem. Rev. 2006, 106, 17.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. A. Petasis, A. Goodman, I. A. Zavialov, Tetrahedron 1997, 53, 16463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1WgsLo%3D&md5=3d811ffa0badc633a6439068f665104bCAS |
[6] M. Follmann, F. Graul, T. Schäfer, S. Kopec, P. Hamley, Synlett 2005, 1009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVOru7Y%3D&md5=29f4351500e23d20bdf6e2ada9937cb3CAS |
[7] S. Oi, M. Moro, H. Fukuhara, T. Kawanishi, Y. Inoue, Tetrahedron Lett. 1999, 40, 9259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVyiu74%3D&md5=fe26eba447c077bc190dbf0e8018189fCAS |
[8] M. Ueda, N. Miyaura, J. Organomet. Chem. 2000, 595, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslem&md5=1a7cf6990a7b7eca9dcf409493a76102CAS |
[9] M. Ueda, A. Saito, N. Miyaura, Synlett 2000, 1637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ght7o%3D&md5=d7ab9d4efa566d265b33360a8fb9a280CAS |
[10] T. Hayashi, M. Ishigetani, J. Am. Chem. Soc. 2000, 122, 976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVKqtg%3D%3D&md5=583a23c42f474811e696aec66f0f10fbCAS |
[11] T. Hayashi, M. Ishigetani, Tetrahedron 2001, 57, 2589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1agtrc%3D&md5=7866e42da86f48dc5c29f8bb986c872eCAS |
[12] S. Oi, M. Moro, H. Fukuhara, T. Kawanishi, Y. Inoue, Tetrahedron 2003, 59, 4351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Wkur4%3D&md5=8b68e4fb97d9ed9a333f94480670ef3cCAS |
[13] M. Kuriyama, T. Soeta, X. Hao, Q. Chen, K. Tomioka, J. Am. Chem. Soc. 2004, 126, 8128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksl2rtrg%3D&md5=e13b1dddbeec88dc5b5c6dae99a5cd98CAS |
[14] N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2004, 126, 13584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVOltbw%3D&md5=12848cb5b4d46e9fd16aff252543fdc0CAS |
[15] Y. Otomaru, N. Tokunaga, R. Shintani, T. Hayashi, Org. Lett. 2005, 7, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFCiu7bI&md5=95191952aca486aa4e4d4d85d376db91CAS |
[16] H.-F. Duan, Y.-X. Jia, L.-X. Wang, Q.-L. Zhou, Org. Lett. 2006, 8, 2567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKksL0%3D&md5=0f39bb13b0a2ad30ab798d367453b273CAS |
[17] R. B. C. Jagt, P. Y. Toullec, D. Geerdink, J. G. de Vries, B. L. Feringa, A. J. Minnaard, Angew. Chem. Int. Ed. 2006, 45, 2789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFWrs78%3D&md5=33d1bcde5c47bbd1d4e6fd70b058e7bdCAS |
[18] Z.-Q. Wang, C.-G. Feng, M.-H. Xu, G.-Q. Lin, J. Am. Chem. Soc. 2007, 129, 5336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVyhtbc%3D&md5=a1cbcba57609b460d45fe13f8b483cbeCAS |
[19] G.-N. Ma, T. Zhang, M. Shi, Org. Lett. 2009, 11, 875.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVOltw%3D%3D&md5=a7610de689a0eb487158bb58c76899eeCAS |
[20] M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev. 2010, 110, 3600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFChsbs%3D&md5=4ba2e5208ab148227bef765f4c3ff524CAS |
[21] D. J. Weix, Y. Shi, J. A. Ellman, J. Am. Chem. Soc. 2005, 127, 1092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGhsA%3D%3D&md5=ce83c5e32fd87133d00132bb704d894fCAS |
[22] K. Brak, J. A. Ellman, J. Org. Chem. 2010, 75, 3147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2msb0%3D&md5=4d2923da56bc9c7f12d33eecf3af7142CAS |
[23] M. A. Beenen, D. J. Weix, J. A. Ellman, J. Am. Chem. Soc. 2006, 128, 6304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslKlurc%3D&md5=f08d5cc1255b52a2c2b721cb07ff33e3CAS |
[24] H. Dai, X. Lu, Org. Lett. 2007, 9, 3077.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Cgs7o%3D&md5=9043a86600d824ae78a5f1e8b1998b7bCAS |
[25] H. Dai, M. Yang, X. Lu, Adv. Synth. Catal. 2008, 350, 249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Witrc%3D&md5=ee3d01c764dc69e9f55eb8a3b39490f8CAS |
[26] Y. Yamamoto, K. Kurihara, N. Sugishita, K. Oshita, D.-G. Piao, N. Miyaura, Chem. Lett. 2005, 34, 1224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmu7jM&md5=0f1273dfebece365693c4642519ee66cCAS |
[27] K. Kurihara, N. Sugishita, K. Oshita, D.-G. Piao, Y. Yamamoto, N. Miyaura, J. Organomet. Chem. 2007, 692, 428.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFGh&md5=1eaa56c64a91ab73cc455a002a788896CAS |
[28] K. Kurihara, Y. Yamamoto, N. Miyaura, Tetrahedron Lett. 2009, 50, 3158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVent7o%3D&md5=ccb2bf1406f071dc2505d3f5911ae5e0CAS |
[29] Y. Yamamoto, K. Kurihara, N. Miyaura, Angew. Chem. Int. Ed. 2009, 48, 4414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12isrc%3D&md5=4c4b3a976cbee82d17e9bb46802320daCAS |
[30] K. Kurihara, Y. Yamamoto, N. Miyaura, Adv. Synth. Catal. 2009, 351, 260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWktL8%3D&md5=04c587bcdd7fd6cf38f7131e0deb50c9CAS |
[31] A. S. Demir, C. Tanyeli, A. Cagir, M. N. Tahir, D. Ulku, Tetrahedron Asymmetry 1998, 9, 1035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVSrsbs%3D&md5=a4b58a31d6824b72353c517856bf3709CAS |
[32] G. Borg, M. Chino, J. A. Ellman, Tetrahedron Lett. 2001, 42, 1433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymsr4%3D&md5=447a879a8b9c7adc1d029a2faba53089CAS |
[33] M. Noji, H. Sunahara, K.-i. Tsuchiya, T. Mukai, A. Komasaka, K. Ishii, Synthesis 2008, 3835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlSk&md5=eda65104979bad176cddd8605d894744CAS |
[34] R. Almansa, D. Guijarro, M. Yus, Tetrahedron Lett. 2009, 50, 4188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ertL4%3D&md5=c18fb85abd0bacc2dbfd4516dce0b623CAS |
[35] X.-Q. Yu, T. Shirai, Y. Yamamoto, N. Miyaura, Chem. Asian J. 2011, 6, 932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVaitb4%3D&md5=5867f0acf52ae511a7c28ed78c3d744cCAS |
[36] Y. Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Angew. Chem. Int. Ed. 2008, 47, 928.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2murs%3D&md5=9b2f88b2f6602d52732ceb75914bc8ccCAS |
[37] Y. Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Heterocycles 2010, 80, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1GrtQ%3D%3D&md5=e1b5ca3a3436c426b3d1f431114d55ebCAS |
[38] Y. Yamamoto, J. Sugai, M. Takizawa, N. Miyaura, Org. Synth. 2011, 88, 79.
[39] X.-Q. Yu, Y. Yamamoto, N. Miyaura, Chem. Asian J. 2008, 3, 1517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFejtb%2FP&md5=c7adec6270faf1129545fcd31a0c980aCAS |
[40] X.-Q. Yu, Y. Yamamoto, N. Miyaura, Synlett 2009, 994.
| Crossref | GoogleScholarGoogle Scholar |
[41] M. Mauksch, S. B. Tsogoeva, I. M. Martynova, S. Wei, Angew. Chem. Int. Ed. 2007, 46, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVGjsA%3D%3D&md5=d20b9fdfcfb379668fa85f1a3c6f4dfbCAS |
[42] A. S. K. Hashmi, S. Schäfer, J. W. Bats, W. Frey, F. Rominger, Eur. J. Org. Chem. 2008, 4891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWjsbfP&md5=11dc1b7a3f51b1cb12baef664c93074aCAS |
[43] G. Li, Y. Liang, J. C. Antilla, J. Am. Chem. Soc. 2007, 129, 5830.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegsL4%3D&md5=e1d8d0b409d39a34c382ff6a7fdbd71cCAS |
[44] Z.-Y. Xue, Y. Jiang, W.-C. Yuan, X.-M. Zhang, Eur. J. Org. Chem. 2010, 616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmsrg%3D&md5=44a6495253988840d0b392e0c38a5003CAS |