Intramolecular Dehydrative Condensation of Dicarboxylic Acids with Brønsted Base-Assisted Boronic Acid Catalysts
Akira Sakakura A , Risa Yamashita B , Takuro Ohkubo B , Matsujiro Akakura C D and Kazuaki Ishihara B D EA EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
B Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
C Department of Chemistry, Aichi University of Education, Igaya-cho, Kariya, Aichi, 448-8542, Japan.
D Japan Science and Technology Agency (JST), CREST, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
E Corresponding author. Email: ishihara@cc.nagoya-u.ac.jp
Australian Journal of Chemistry 64(11) 1458-1465 https://doi.org/10.1071/CH11301
Submitted: 7 July 2011 Accepted: 6 October 2011 Published: 16 November 2011
Abstract
Bifunctional Brønsted base-assisted boronic acid catalysts, arylboronic acids bearing two sterically bulky (N,N-dialkylamino)methyl groups at the 2,6-positions, exhibit remarkable activities for the dehydrative intramolecular condensation of dicarboxylic acids. The steric bulkiness of the (N,N-dialkylamino)methyl groups of 1, which prevents the formation of less active species such as the N→B chelated species and triarylboroxines 3, is crucial for the high catalytic activity. This is the first successful method for the catalytic dehydrative self-condensation of di- and tetracarboxylic acids.
References
[1] (a) A. Sakakura, K. Kawajiri, T. Ohkubo, Y. Kosugi, K. Ishihara, J. Am. Chem. Soc. 2007, 129, 14775.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GrtL%2FP&md5=adf32e5c9a743d65e199dfda27ae7f22CAS |
(b) (b) J. Otera, J. Nishikido, Esterification Second Edition, 2010 (WILEY-VCH: Weinheim).
[2] R. Sustmann, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming, E. Winterfeldt) 1991, Vol. 6, pp. 301–321 (Pergamon: Oxford).
[3] D. Davidson, P. Newman, J. Am. Chem. Soc. 1952, 74, 1515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXosVw%3D&md5=a5cf34531cd9bc32c91204f13bd1acf2CAS |
[4] K. Ishihara, Tetrahedron 2009, 65, 1085.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFertQ%3D%3D&md5=bb05c058978fee102980205549fdc4f5CAS |
[5] (a) K. Ishihara, in Boronic Acids (Ed. D. G. Hall) 2005, pp. 377–409 (Wiley-VCH: Weinheim).
(b) K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 1996, 61, 4196.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Ishihara, S. Ohara, H. Yamamoto, Macromolecules 2000, 33, 3511.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Ishihara, S. Kondo, H. Yamamoto, Synlett 2001, 1371,
| Crossref | GoogleScholarGoogle Scholar |
(e) K. Ishihara, S. Ohara, H. Yamamoto, Org. Synth. 2002, 79, 176.
(f) T. Maki, K. Ishihara, H. Yamamoto, Synlett 2004, 1355,
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 2005, 7, 5043.
| Crossref | GoogleScholarGoogle Scholar |
(h) T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 2005, 7, 5047.
| Crossref | GoogleScholarGoogle Scholar |
(i) T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 2006, 8, 1431.
| Crossref | GoogleScholarGoogle Scholar |
(j) T. Maki, K. Ishihara, H. Yamamoto, Tetrahedron 2007, 63, 8645.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) D. B Collum, S Chen, B Ganem, J. Org. Chem. 1978, 43, 4393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtVarsrY%3D&md5=93e79c1d0efdc7526e43db8247744cecCAS |
(b) T. A. Houston, B. L. Wilkinson, J. T. Blanchfield, Org. Lett. 2004, 6, 679.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. K. Mylavarapu, G. C. M. Kondaiah, N. Kolla, R. Veeramalla, P. Koilkonda, A Bhattacharya, R Bandichhor, Org. Process Res. Dev. 2007, 11, 1065.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) K. Arnold, B. Davies, R. L. Giles, C. Grosjean, G. E. Smith, A. Whiting, Adv. Synth. Catal. 2006, 348, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1WmsLY%3D&md5=a2d1348a911e1792e8c3871cfced15c9CAS |
(b) K. Arnold, A. S. Batsanov, B. Davies, A. Whiting, Green Chem. 2008, 10, 124.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Arnold, B. Davies, D. Hérault, A. Whiting, Angew. Chem. Int. Ed. 2008, 47, 2673.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. Georgiou, G. Ilyashenko, A. Whiting, Acc. Chem. Res. 2009, 42, 756.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Charville, D. Jackson, G. Hodges, A. Whiting, Chem. Commun. 2010, 46, 1813.
| Crossref | GoogleScholarGoogle Scholar |
[8] R. M. Al-Zoubi, O. Marion, D. G. Hall, Angew. Chem. Int. Ed. 2008, 47, 2876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVyks7o%3D&md5=aa3e87d466ff59a9e28c8bb1ed057c95CAS |
[9] T. Marcelli, Angew. Chem. Int. Ed. 2010, 49, 6840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGntr7O&md5=190af9258c71b6c312e0c161ef451e17CAS |
[10] (a) R. L. Giles, J. A. K Howard, L. G. F. Patrick, M. R. Probert, G. E. Smith, A. J Whiting, Organomet. Chem 2003, 680, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Glsbc%3D&md5=ff3d683a88c6dc65991c3ca8a237b082CAS |
(b) S. W. Coghlan, R. L. Giles, J. A. K. Howard, L. G. F. Patrick, M. R. Probert, G. E. Smith, A. Whiting, J. Organomet. Chem. 2005, 690, 4784.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Blatch, O. V. Chetina, J. A. K. Howard, L. G. F. Patrick, C. A. Smethurst, A. Whiting, Org. Biomol. Chem. 2006, 4, 3297.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) S. L. Wiskur, J. J. Lavigne, H Ait-Haddou, V Lynch, Y. H. Chiu, J. W. Canart, E. V. Anslyn, Org. Lett. 2001, 3, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVOrs7w%3D&md5=1a7a7651e1ba9e418897133f7dc80300CAS |
(b) L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey, E. V. Anslyn, J. Am. Chem. Soc. 2006, 128, 1222.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. E. Collins, S. Sorey, A. E. Hargrove, S. H. Shabbir, V. M. Lynch, E. V. Anslyn, J. Org. Chem. 2009, 74, 4055.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) G Wulff, Pure Appl. Chem. 1982, 54, 2093.
| Crossref | GoogleScholarGoogle Scholar |
(b) M Lauer, G Wulff, J. Organomet. Chem. 1983, 256, 1.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. I. Bosch, T. M. Fyles, T. D. James, Tetrahedron 2004, 60, 11175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wkt7k%3D&md5=63ea0bdec777cceef7928cf1aa31e304CAS |
[14] (a) J Yoshimoto, C. A Sandoval, S Saito, Chem. Lett. 2008, 37, 1294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVyr&md5=a6667b09f038d9875dd9c96349f7b1aaCAS |
(b) S. Oishi, J. Yoshimoto, S. Saito, J. Am. Chem. Soc. 2009, 131, 8748.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger, M. Leskelä, T. Repo, P. Pyykkö, B. Rieger, J. Am. Chem. Soc. 2008, 130, 14117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sjt7jO&md5=d3c24d5996c25193a357fde22d6748e6CAS |
[16] A. Sakakura, T. Ohkubo, R. Yamashita, M. Akakura, K. Ishihara, Org. Lett. 2011, 13, 892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cqtro%3D&md5=7f2e6f0d779fe597fa1b2bfc00593b75CAS |
[17] (a) M. Takeuchi, K. Koumoto, M. Goto, S. Shinkai, Tetrahedron 1996, 52, 12931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVKrt74%3D&md5=5cbdb3ee3cc1ba4c4941c757d51f8db8CAS |
(b) S. J. Gardiner, B. D. Smith, P. J. Duggan, M. J. Karpa, G. J. Griffin, Tetrahedron 1999, 55, 2857.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) (a) M. K. Ghosh, K. L. Mittal, Polyimides, Fundamentals and Applications 1996 (Marcel Dekker: New York, NY).
(b) M. Tomikawa, S. Yoshida, N. Okamoto, Polym. J. 2009, 41, 604.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision E.01 2004 (Gaussian Inc.: Wallingford, CT).
[20] (a) A. D Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ee5af041032bb2825357f4a4a02b5705CAS |
(b) P. J. Stephens, J. F. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Hu, Y. Ishikawa, K. Hirai, H. Tomioka, Bull. Chem. Soc. Jpn. 2001, 74, 2207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosV2murY%3D&md5=3b824d01343b0e9a622fba5832074e94CAS |