Silver(i) and Lead(ii) Halide Compounds with 4-Methyl-1,2,4-triazole-3-thiol
Yu-Ling Wang A B , Yun-Liang Jiang A , Qing-Yan Liu A B , Jia-Jia Wei A and Li-Qin Li AA College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
B Corresponding authors. Email: qyliuchem@hotmail.com; ylwangchem@gmail.com
Australian Journal of Chemistry 65(1) 50-57 https://doi.org/10.1071/CH11261
Submitted: 24 June 2011 Accepted: 10 November 2011 Published: 5 December 2011
Abstract
Four novel silver(i) and lead(ii) halide compounds with the 4-methyl-1,2,4-triazole-3-thiol (Hmptrz) ligand, namely [Ag2(mptrz)(μ3-X)]n (X = I (1) and Br (2)) and [Pb4(μ4-O)(mptrz)4(μ2-X)2] (X = I (3) and Cl (4)), have been synthesized and characterized. The structures exhibit different dimensionality depending on the nature of the metal ions. Compounds 1 and 2 are isomorphous and have 2D layered structures based on inorganic [Ag2X2]n infinite chains (X = I and Br), in which the mptrz– ligand displays a novel pentadentate bridging coordination mode. Compounds 3 and 4 have similar structures and are composed of a discrete tetranuclear lead(ii) cluster featuring an oxygen-centred Pb4(µ4-O) tetrahedron. Compounds 1 and 2 display solid-state photoluminescent emission with the maximum at 589 and 420 nm respectively. Compounds 3 and 4 show solid-state photoluminescent emission with the maximum at 710 and 540 nm respectively. Additionally, compounds 1–4 were characterized by IR, elemental analysis, powder X-ray diffraction and thermogravimetric analysis.
References
[1] (a) C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2hsbo%3D&md5=0befc5a6ba849899218ae0dc0eaf33d2CAS |
(b) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) W. Zhang, H.-Y. Ye, R.-G. Xiong, Coord. Chem. Rev. 2009, 253, 2980.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7%2FL&md5=4d1d1132cf6dec1589c95542355fd269CAS |
(b) R. Peng, M. Li, D. Li, Coord. Chem. Rev. 2010, 254, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Zhang, T. Wu, S. Chen, P. Feng, X. Bu, Angew. Chem. Int. Ed. 2009, 48, 3486.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=c48ac085d0c80ae9dfbf971ebf9aff87CAS |
(b) G. K. H. Shimizu, R. Vaidhyanathan, J. M. Taylor, Chem. Soc. Rev. 2009, 38, 1430.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-G. Mao, Coord. Chem. Rev. 2007, 251, 1493.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) P. D. Akrivos, Coord. Chem. Rev. 2001, 213, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFaku7c%3D&md5=61e1e53be1cfb9e03c81598da73902aeCAS |
(b) W. P. Su, M. C. Hong, J. B. Weng, Y. C. Liang, Y. J. Zhao, R. Cao, Z. Y. Zhou, A. S. C. Chan, Inorg. Chim. Acta 2002, 331, 8.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. S. Raper, Coord. Chem. Rev. 1996, 153, 199.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-K. Cheng, J. Zhang, P.-X. Yin, Q.-P. Lin, Z.-J. Li, Y.-G. Yao, Inorg. Chem. 2009, 48, 9992.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Castiñeiras, I. García-Santos, S. Dehnen, P. Sevillano, Polyhedron 2006, 25, 3653.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. C. Constable, S. M. Elder, C. A. Palmer, P. R. Raithby, D. A. Tocher, Inorg. Chim. Acta 1996, 252, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1Kqtb8%3D&md5=ff5e4464991ae8cf63b1a4703bd1a879CAS |
[6] (a) S. Kitagawa, S. Kawata, Y. Nozaka, M. Munakata, J. Chem. Soc., Dalton Trans. 1993, 1399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlslartLY%3D&md5=5d57a4abb563c48602cdec6028dc93dfCAS |
(b) S. Ramaprabhu, E. A. C. Lucken, G. Bernardinelli, J. Chem. Soc., Dalton Trans. 1995, 115.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) X.-D. Chen, H.-F. Wu, M. Du, Chem. Commun. 2008, 1296.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Du, Z.-H. Zhang, X.-J. Zhao, Q. Xu, Inorg. Chem. 2006, 45, 5785.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) C. L. Ma, G. R. Tian, R. F. Zhang, J. Inorg. Organomet. Polym. Mater 2006, 16, 139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSqtbk%3D&md5=1ee2a46d06fe60e85ddc512b95e06043CAS |
(b) S. A. Aziz-ur-Rehman, S. Shahzadi, M. Helliwell, Acta Crystallogr. 2006, E60, m2328.
[9] Y.-L. Jiang, Y.-L. Wang, J.-X. Lin, Q.-Y. Liu, Z.-H. Lu, N. Zhang, J.-J. Wei, L.-Q. Li, CrystEngComm 2011, 13, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12it7k%3D&md5=5e933b3980b4242ce45ca5aa6411af8aCAS |
[10] (a) T. S. Lobana, R. Sharma, G. Hundal, R. J. Butcher, Inorg. Chem. 2006, 45, 9402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyhsbbE&md5=bf92f2c95f9323d1f8ab0897732a8874CAS |
(b) X.-H. Bu, W. Chen, S.-L. Lu, R.-H. Zhang, D.-Z. Liao, W.-M. Bu, Angew. Chem. Int. Ed. 2001, 40, 3201.
| Crossref | GoogleScholarGoogle Scholar |
(c) X.-H. Bu, W. Chen, M. Du, K. Biradha, W.-Z. Wang, R.-H. Zhang, Inorg. Chem. 2002, 41, 437.
| Crossref | GoogleScholarGoogle Scholar |
(d) X.-H. Bu, W. Chen, W.-F. Hou, M. Du, R.-H. Zhang, F. Brisse, Inorg. Chem. 2002, 41, 3477.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Beheshti, W. Clegg, N. R. Brooks, F. Sharafi, Polyhedron 2005, 24, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKjsbk%3D&md5=a2b8d92976031feaf5aa4b16b673982aCAS |
[12] H.-H. Li, Z.-R. Chen, J.-Q. Li, C.-C. Huang, Y.-F. Zhang, G.-X. Jia, Eur. J. Inorg. Chem. 2006, 2447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVaiurw%3D&md5=77c5a981584c781a06b1504e060a4c97CAS |
[13] S. Mishra, E. Jeanneau, S. Daniele, G. Ledoux, Dalton Trans. 2008, 6296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlensr%2FL&md5=fac482a6e5d5b6e7d6f815fe66f087ccCAS |
[14] Y. J. Zhao, W. P. Su, R. Cao, M. C. Hong, Acta Crystallogr. 1999, C55, IUC9900122.
[15] W. Z. Chen, F. H. Liu, J. Organomet. Chem. 2003, 673, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGlsr4%3D&md5=9b21b1948129c55bafd9f297f8a4493fCAS |
[16] G. Helgesson, S. Jagner, J. Chem. Soc., Dalton Trans. 1990, 2413.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsVOhtQ%3D%3D&md5=c8d77b588884d65b98f46badc9c5833eCAS |
[17] Y.-S. Jiang, H.-G. Yao, S.-H. Ji, M. Ji, Y.-L. An, Inorg. Chem. 2008, 47, 3922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVeisrY%3D&md5=274c9aa98264ed12726e29d7ab0f40b5CAS |
[18] D. J. Eisler, C. W. Kirby, R. J. Puddephatt, Inorg. Chem. 2003, 42, 7626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFWksbs%3D&md5=5aca46ebfb74bd6ccd133a512d5f149dCAS |
[19] I. D. Brown, D. Altermatt, Acta Crystallogr. 1985, B41, 244.
| 1:CAS:528:DyaL2MXlvVertbg%3D&md5=a855899494807e41c7f70ae5a5a0fc08CAS |
[20] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=3bd1fefd910662044bf9e85065a58830CAS |
[21] C. Gaffney, P. G. Harrison, T. J. Kin, J. Chem. Soc. Chem. Comm. 1980, 1251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhs1Gru7s%3D&md5=cbeee3fcc1a08d42078fbd441221e5f3CAS |
[22] (a) M. R. St. J. Foreman, M. J. Plater, J. M. S. Skakle, J. Chem. Soc., Dalton Trans. 2001, 1897.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. K. Li, Y. L. Song, H. W. Hou, Y. T. Fan, Y. Zhu, Eur. J. Inorg. Chem. 2005, 3238.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Thirumurugan, R. A. Sanguramath, C. N. R. Rao, Inorg. Chem. 2008, 47, 823.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Oldag, H.-L. Keller, Z. Anorg. Allg. Chem. 2006, 632, 1267.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. Ouellette, B. S. Hudson, J. Zubieta, Inorg. Chem. 2007, 46, 4887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFCjsLo%3D&md5=b74664047825affb8a2d003958187297CAS |
[24] R.-B. Zhang, Z.-J. Li, J.-K. Cheng, Y.-Y. Qin, J. Zhang, Y.-G. Yao, Cryst. Growth Des. 2008, 8, 2562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsF2gsrw%3D&md5=a2c1370c2487bbfc0bcf626be015e69aCAS |
[25] (a) P. C. Ford, A. Vogler, Acc. Chem. Res. 1993, 26, 220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsl2kt7o%3D&md5=61bb036686bbade483c8712c29f75156CAS |
(b) N. P. Rath, E. M. Holt, K. Tanimura, Inorg. Chem. 1985, 24, 3934.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Bayler, A. Schier, G. A. Bowmaker, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 7006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFCis7g%3D&md5=54a2e201fcade082f2e412182e7566b5CAS |
[27] (a) A. Vogler, H. Kunkely, Inorg. Chem. 1997, 19, 283.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVWhtw%3D%3D&md5=507db64b0bb8ed30bbd687660d0a85beCAS |
(b) A. Vogler, H. Kunkely, Top. Curr. Chem. 2001, 213, 143.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. B. Deacon, R. J. Pillips, Coord. Chem. Rev. 1980, 33, 227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvVOqsw%3D%3D&md5=7309f80da9a9a3f327fc47f3e07ff0b0CAS |
[29] H. Kunkely, A. Vogler, Chem. Phys. Lett. 1991, 187, 609.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XntFWgug%3D%3D&md5=59f67f64ed54a4733c378fb90f0c8b49CAS |
[30] G. M. Sheldrick, SADABS 1995 (University of Göttingen: Göttingen, Germany).
[31] G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).