Individual and Population Quantitative Analyses of Calcium Flux in T-Cells Activated on Functionalized Material Surfaces
Susan N. Christo A B , Ghafar.T. Sarvestani C , Stefani S. Griesser D , Bryan R. Coad D E , Hans J. Griesser D , Krasimir Vasilev E , Michael P. Brown A F G , Kerrilyn R. Diener A H and John D. Hayball A B H IA Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, PO Box 14 Rundle Mall, Adelaide, SA 5000, Australia.
B Sansom Institute, University of South Australia, PO Box 2471, Adelaide, SA 5001, Australia.
C Detmold Imaging Core Facility, SA Pathology, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia.
D Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, SA 5095, Australia.
E Mawson Institute, University of South Australia, PO Box 2471, Adelaide, SA 5001, Australia.
F Cancer Clinical Trials Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA 5000, Australia.
G School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia. SA 5005, Australia.
H School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia.
I Corresponding author. School of Pharmacy and Medical Science, University of South Australia, Frome Road, Adelaide, South Australia, Australia, 5000. Email: john.hayball@unisa.edu.au
Australian Journal of Chemistry 65(1) 45-49 https://doi.org/10.1071/CH11311
Submitted: 25 July 2011 Accepted: 16 October 2011 Published: 23 November 2011
Abstract
We have developed a novel method for activating T-cells on material surfaces that enable individual and population-based analyses of intracellular calcium flux, as a quantitative measure of T-cell receptor engagement. Functionalized material surfaces were created using a plasma-polymerized foundation layer to immobilize stimulatory T-cell ligands, which could induce T-cell receptor-dependent calcium flux in naive T-cells. Real-time confocal microscopic detection and quantification of calcium flux using paired fluorescent ratiometric probes facilitated the tracking and analysis of response profiles of individual T-cells, as well as population analyses using a combination of individual T-cell events. This type of combined analysis cannot be achieved using traditional population-based flow cytometric approaches, and thus provides a logical step towards developing the capacity to assess the magnitude and quality of inherently heterogeneous effector T-cell responses to antigenic challenge.
References
[1] S. Ramanathan, J. Gagnon, S. Ilangumaran, Arch. Immunol. Ther. Exp. 2008, 56, 311.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVaiur3L&md5=6b190b8a92da76117489c29d33909650CAS |
[2] S. Wu, L. Jin, L. Vence, L. G. Radvanyi, Expert Rev. Vaccines 2010, 9, 631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVKhtr8%3D&md5=9bfda1a8613f9dc6b266272ea588a8e5CAS |
[3] C. S. Hinrichs, L. Gattinoni, N. P. Restifo, Curr. Opin. Immunol. 2006, 18, 363.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVGhsbY%3D&md5=3928a22a1fa3f95b13761a07cbe24611CAS |
[4] G. Afonso, M. Scotto, A. Renand, J. Arvastsson, D. Vassilieff, C. M. Cilio, R. Mallone, J. Immunol. Methods 2010, 359, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yntL0%3D&md5=835444f4e90b1cc4ef13ef254e42b187CAS |
[5] M. A. Suni, V. C. Maino, H. T. Maecker, Curr. Opin. Immunol. 2005, 17, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVWlsLw%3D&md5=d5bfe5b1a6b561094c3557f18130c39bCAS |
[6] D. Nagorsen, C. Scheibenbogen, E. Thiel, U. Keilholz, Expert Opin. Biol. Ther. 2004, 4, 1677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVOmsro%3D&md5=243b4459bd320b1197c4c5f8c7c415deCAS |
[7] T. L. Whiteside, Y. Zhao, T. Tsukishiro, E. M. Elder, W. Gooding, J. Baar, Clin. Cancer Res. 2003, 9, 641.
| 1:CAS:528:DC%2BD3sXhtVKks7s%3D&md5=9553042fc7262b6c9cc986bcb46000f4CAS |
[8] A. C. Karlsson, J. N. Martin, S. R. Younger, B. M. Bredt, L. Epling, R. Ronquillo, A. Varma, S. G. Deeks, J. M. McCune, D. F. Nixon, E. Sinclair, J. Immunol. Methods 2003, 283, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOlu7o%3D&md5=4f03819ad76b0fcc8be71f1c5f04d823CAS |
[9] M. Oh-hora, A. Rao, Curr. Opin. Immunol. 2008, 20, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ahtr0%3D&md5=ff355ee0d66dd3c1bf05b5b5938ad0f4CAS |
[10] P. G. Hogan, L. Chen, J. Nardone, A. Rao, Genes Dev. 2003, 17, 2205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFaitbo%3D&md5=434c59667a7a1f82d1e938e7c493b703CAS |
[11] A. T. Pores-Fernando, A. Zweifach, Immunol. Rev. 2009, 231, 160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGlsL7F&md5=f7e315aae50d4f0d1b03c4a9a55a5b6dCAS |
[12] R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, J. D. Lechleiter, Methods 2008, 46, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWrsrfJ&md5=7145c62a802b3264fc9febdfe7a6aa2cCAS |
[13] K. Adachi, M. M. Davis, Proc. Natl. Acad. Sci. USA 2011, 108, 1549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmtLs%3D&md5=1ac840b4fb8b158b29bd9ca11cdc1f3fCAS |
[14] C. L. Sommers, C. S. Park, J. Lee, C. Feng, C. L. Fuller, A. Grinberg, J. A. Hildebrand, E. Lacana, R. K. Menon, E. W. Shores, L. E. Samelson, P. E. Love, Science 2002, 296, 2040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Churo%3D&md5=03d0348f2e2aefa7b0885ac86b5589adCAS |
[15] Y. Soen, D. S. Chen, D. L. Kraft, M. M. Davis, P. O. Brown, PLoS Biol. 2003, 1, E65.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. R. Diener, S. N. Christo, S. S. Griesser, G. T. Sarvestani, K. Vasilev, H. J. Griesser, J. D. Hayball, Acta Biomaterialia 2011,
[17] K. Sugie, M. S. Jeon, H. M. Grey, Proc. Natl. Acad. Sci. USA 2004, 101, 14859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVyisro%3D&md5=bfef206d1453e2cd6a27eacd7e40217dCAS |
[18] C. Walker, F. Bettens, W. J. Pichler, Eur. J. Immunol. 1987, 17, 873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlaht7Y%3D&md5=37c9691612c251585f1e098fb402e754CAS |
[19] R. Rudolf, M. Mongillo, R. Rizzuto, T. Pozzan, Nat. Rev. Mol. Cell Biol. 2003, 4, 579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWnu7c%3D&md5=c2a94aca7c5bc1eeda911c973519cf55CAS |
[20] M. Kirschbaum, M. S. Jaeger, C. Duschl, Lab Chip 2009, 9, 3517.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtbrE&md5=ffbc6fb7d9a2efcdb36462b364bc2632CAS |
[21] A. S. Kaposi, G. Veress, B. Vasarhelyi, S. Bailey, T. Tulassay, A. Treszl, Cytometry A 2008, 73A, 246.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. P. Arrol, L. D. Church, P. A. Bacon, S. P. Young, Clin. Exp. Immunol. 2008, 153, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFelurw%3D&md5=4d1fb085912f5a4475bb25eef0a2e1f1CAS |
[23] S. A. Nicolaou, L. Neumeier, K. Takimoto, S. M. Lee, H. J. Duncan, S. K. Kant, A. B. Mongey, A. H. Filipovich, L. Conforti, Cell Calcium 2010, 47, 19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlClsr8%3D&md5=de550e2a43486740b8c69590bfdff085CAS |
[24] P. S. Rabinovitch, C. H. June, A. Grossmann, J. A. Ledbetter, J. Immunol. 1986, 137, 952.
| 1:CAS:528:DyaL28XkvFGlt74%3D&md5=34a09cac3ea160b615bdbf2fd4d50ac0CAS |
[25] T. Xu, C. W. Li, X. Yao, G. Cai, M. Yang, Anal. Biochem. 2010, 396, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShtbzE&md5=83951d88b5014ebed301bebdb7798e69CAS |
[26] P. D. Hodgkin, Immunol. Cell Biol. 2007, 85, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSjtb4%3D&md5=321923bd2e86af330e7790783bf4150dCAS |
[27] S. J. Altschuler, L. F. Wu, Cell 2010, 141, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ehurc%3D&md5=7fce9a33e42370dc2fb403e0d36e8afbCAS |