Synthesis, and Acid–Base and DNA-Binding Properties of a Thiophen-Appended Ruthenium Complex
Hong Luo A , Zhi-Ping Wang A B , An-Guo Zhang A and Ke-Zhi Wang A CA College of Chemistry, Beijing Normal University, Beijing 100875, China.
B Department of Chemistry, Jining Teachers College, Jining, Inner Mongolia 01200, China.
C Corresponding author. Email: kzwang@bnu.edu.cn
Australian Journal of Chemistry 64(2) 206-216 https://doi.org/10.1071/CH10316
Submitted: 1 October 2010 Accepted: 21 November 2010 Published: 15 February 2011
Abstract
2-(5-Phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (Hptip) and its RuII complex [Ru(bpy)2(Hptip)](PF6)2 (where bpy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and mass spectrometry. The acid–base properties of the complex were studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constants were derived. The DNA-binding properties of [Ru(bpy)2(Hptip)](PF6)2 were also investigated by means of UV-vis and emission spectroscopy, salt effects, steady-state emission quenching by [Fe(CN)6]4–, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. Density functional theoretical calculations were also carried out in order to understand the DNA binding properties.
References
[1] C. Metcalfe, J. A. Thomas, Chem. Soc. Rev. 2003, 32, 215.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1emt7g%3D&md5=934e567a292f5e483099a8e5ff5067eeCAS | 12875027PubMed |
[2] G. Y. Bai, B. Dong, K. Z. Wang, Z. M. Duan, L. H. Gao, J. Inorg. Biochem. 2004, 98, 1017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCmtrw%3D&md5=921731f12b593e30869b6cc85340380cCAS | 15149810PubMed |
[3] R. Corradine, S. Sforza, T. Tedeschi, R. Marchelli, Chirality 2007, 19, 269.
| Crossref | GoogleScholarGoogle Scholar | 17345563PubMed |
[4] H. L. Chen, Ch. J. Dou, Y. B. Wu, H. Li, X. L. Xi, P. Yang, J. Inorg. Biochem. 2009, 103, 827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslyitr8%3D&md5=83b2327698307ba5a08defb88b959ddbCAS | 19307022PubMed |
[5] K. E. Erkkila, D. T. Odom, J. K. Barton, Chem. Rev. 1999, 99, 2777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksl2ls7w%3D&md5=9b95d599a40ede5ef88311faf9ad2fc5CAS | 11749500PubMed |
[6] L. N. Ji, X. H. Zou, J. G. Liu, Coord. Chem. Rev. 2001, 216–217, 513.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. J. Han, Z. M. Duan, Q. Hao, S. Z. Zheng, K. Z. Wang, J. Phys. Chem. C 2007, 111, 16577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCisbbN&md5=c0b6b34959761f23d329a25b98684a55CAS |
[8] J. K. Barton, Science 1986, 233, 727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVyqur0%3D&md5=cad8f5df9886c70f178763eb4fa7476eCAS | 3016894PubMed |
[9] B. Elias, A. K. D. Mesmaeker, Coord. Chem. Rev. 2006, 250, 1627.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltl2ms7g%3D&md5=47aed7449384704898c0013dc2e0c6c1CAS |
[10] R. M. Hartshorn, J. K. Barton, J. Am. Chem. Soc. 1992, 114, 5919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt12gu7g%3D&md5=f80d498b71fb7cd5004811694792a946CAS |
[11] C. Hiort, P. Lincoln, B. Norden, J. Am. Chem. Soc. 1993, 115, 3448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCntLs%3D&md5=553bf3d21c8d81b6789a5763f311ba02CAS |
[12] E. Terpetschnig, H. Szmacinski, H. Malak, J. R. Lakowicz, J. Biophys. 1995, 68, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivF2htrg%3D&md5=82fa39d6efb21cec54ce7de3363c36b7CAS |
[13] C. J. Murphy, J. K. Barton, Methods Enzymol. 1993, 226, 576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitl2ht7c%3D&md5=a968356fe4d2c2c05bebc462bb468517CAS | 8277884PubMed |
[14] M. J. Han, L. H. Gao, K. Z. Wang, New J. Chem. 2006, 30, 208.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wksrw%3D&md5=d9b3a295e2e27aeb31df668ea9d37162CAS |
[15] N. W. Luedtke, J. S. Hwang, E. C. Glazer, D. Gut, M. Kol, Y. Tor, ChemBioChem 2002, 3, 766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1aqt7k%3D&md5=8eb0699959f6bc9bc69b36d709c99565CAS | 12203975PubMed |
[16] G. N. Grimm, A. S. Boutorine, P. Lincoln, B. Norden, C. Helene, ChemBioChem 2002, 3, 324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislGgtr0%3D&md5=4cfadea9aca7d68090335ae2aeb50a71CAS | 11933233PubMed |
[17] K. E. Augustyn, J. C. Genereux, J. K. Barton, Angew. Chem. Int. Ed. 2007, 46, 5731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFGhtLk%3D&md5=1d0a57c94e363aa8b7e1017031a1a48cCAS |
[18] S. Fukuzumi, M. Tanaka, M. Nishimine, K. Ohkubo, J. Photochem. Photobiol. A 2005, 175, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSiur%2FP&md5=3468d24854d7bd2d60defa39f493a3f1CAS |
[19] F. Westerlund, F. Pierard, M. P. Eng, B. Norden, P. Lincoln, J. Phys. Chem. B 2005, 109, 17327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1CmtLg%3D&md5=aa647532bbf654c1f46ded494effb4f4CAS | 16853212PubMed |
[20] M. D. Purugganan, C. V. Kumar, N. J. Turro, J. K. Barton, Science 1988, 241, 1645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1Cqt7k%3D&md5=b60e5245a6e6e4a98999be5f8817aadaCAS | 3420416PubMed |
[21] (a) A. Odedra, S. Datta, R. S. Liu, J. Org. Chem. 2007, 72, 3289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFCisb0%3D&md5=919cdb0a58630bc0b37cbf41c516c148CAS | 17402784PubMed |
(b) A. J. Esswein, D. G. Nocera, Chem. Rev. 2007, 107, 4022.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Martineau, M. Beley, P. C. Gros, J. Org. Chem. 2006, 71, 566.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. Hagemann, M. Jorgensen, F. C. Krebs, J. Org. Chem. 2006, 71, 5546.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. Y. Bai, B. Dong, K. Z. Wang, L. P. Jin, L. H. Gao, J. Inorg. Biochem. 2004, 98, 2011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslGnsL8%3D&md5=8a6c49512068e7db959878f3b880563cCAS | 15541489PubMed |
[23] B. Y. Wu, L. H. Gao, Z. M. Duan, K. Z. Wang, J. Inorg. Biochem. 2005, 99, 1685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVCqu74%3D&md5=00b9f68abd2929a0e037b5e09e99e922CAS | 16005071PubMed |
[24] (a) F. R. Liu, K. Z. Wang, G. Y. Bai, Y. G. Zhang, L. H. Gao, Inorg. Chem. 2004, 43, 1799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVylsbw%3D&md5=8838fcc2511571bf7ec8e5320f694473CAS | 14989674PubMed |
(b) S. H. Fan, A. G. Zhang, C. C. Ju, L. H. Gao, K. Z. Wang, Inorg. Chem. 2010, 49, 3752.
| Crossref | GoogleScholarGoogle Scholar |
[25] Y. M. Chen, Y. J. Liu, Q. Li, K. Z. Wang, J. Inorg. Biochem. 2009, 103, 1395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wrs7fI&md5=f7b5155f39a1dc80b2008af37c42a5f6CAS | 19716604PubMed |
[26] R. M. F. Batista, S. P. G. Costa, M. Belsley, C. Lodeiro, M. M. M. Raposo, Tetrahedron 2008, 64, 9230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWksb3K&md5=742836821faaef1e7d5c9ad6a8fecd6bCAS |
[27] E. A. Steck, A. R. Day, J. Am. Chem. Soc. 1943, 65, 452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXhsVGisg%3D%3D&md5=86d6d65bf6a35d6647d52b393a45b2a3CAS |
[28] L. F. Tan, F. Wang, H. Chao, Helv. Chim. Acta 2007, 90, 205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1enurw%3D&md5=516e6804ae56190bfafec674e0598afbCAS |
[29] K. C. Zheng, H. Deng, X. W. Liu, H. Li, H. Chao, L. N. Ji, J. Mol. Struc.-Theochem 2004, 682, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFersro%3D&md5=e2b4d452e2975e5cadead5987553940aCAS |
[30] M. J. Han, Y. M. Chen, K. Z. Wang, New J. Chem. 2008, 32, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFGlt7o%3D&md5=8b92060bd88bd9d072b7f405e08143a0CAS |
[31] M. J. Han, L. H. Gao, Y. Y. Lü, K. Z. Wang, J. Phys. Chem. B 2006, 110, 2364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFSluw%3D%3D&md5=944416c25dd7045ec568208c79cc105eCAS | 16471826PubMed |
[32] (a) J. Z. Wu, G. Yang, S. Chen, L. N. Ji, J. Y. Zhou, Inorg. Chim. Acta 1998, 283, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Cmtrw%3D&md5=d8a4fcb3e3813033750697da9a9acfd3CAS |
(b) H. Chao, R. H. Li, C. W. Jiang, H. Li, L. N. Ji, X. Y. Li, J. Chem. Soc. Dalton. Trans. 2001, 1920.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Xu, K. C. Zheng, H. Deng, L. J. Lin, Q. L. Zhang, L. N. Ji, New J. Chem. 2003, 27, 1255.
| Crossref | GoogleScholarGoogle Scholar |
[33] Y. Z. Ma, H. J. Yin, K. Z. Wang, J. Phys. Chem. B 2009, 113, 11039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGjsL8%3D&md5=b4274223550064707afbb871ebaac200CAS | 19719276PubMed |
[34] K. O. Donoghue, J. C. Penedo, J. M. Kelly, P. E. Kruger, Dalton Trans. 2005, 1123.
| Crossref | GoogleScholarGoogle Scholar | 15739016PubMed |
[35] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Von Zelewsky, Coord. Chem. Rev. 1988, 84, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVaisLs%3D&md5=73593af26e89be5ac80c26bae9464b7fCAS |
[36] J. Z. Wu, B. H. Ye, L. Wang, L. N. Ji, J. Y. Zhou, R. H. Li, Z. Y. Zhou, J. Chem. Soc., Dalton Trans. 1997, 1395.
| Crossref | GoogleScholarGoogle Scholar |
[37] G. M. Bryant, J. E. Fergusson, H. K. J. Powell, Aust. J. Chem. 1971, 24, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXpt12rsQ%3D%3D&md5=059a7a58d7847d4488da30b3509bac05CAS |
[38] Y. Y. Lü, L. H. Gao, M. J. Han, K. Z. Wang, Eur. J. Inorg. Chem. 2006, 430.
| Crossref | GoogleScholarGoogle Scholar |
[39] E. Craver, A. McCrate, M. Nielsen, S. Swavey, Inorg. Chim. Acta 2010, 363, 453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjt7bF&md5=5b8d7e5bdc573cb8f661cbc815a015c8CAS |
[40] (a) M. T. Record, C. F. Anderson, T. M. Lohman, Rev. Biophys 1978, 11, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsVWqtr4%3D&md5=28acffe39828471315c4e95fd33242b3CAS |
(b) A. Wolfe, G. H. Shimer Jr, T. Meehan, Biochemistry 1987, 26, 6392.
| Crossref | GoogleScholarGoogle Scholar |
[41] Q. L. Zhang, J. H. Liu, X. Z. Ren, B. Wei, H. Xu, Chin. J. Inorg. Chem. 2003, 19, 645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Cit7c%3D&md5=649a92ee88c8f24691e39c2209c49a70CAS |
[42] K. Mudasir, E. T. Wijaya, N. Wahyuni, H. Yoshioka, Inoue, Biophys. Chem. 2006, 121, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGhtbw%3D&md5=8f5aa824060e15e04c19de26cc8bdcafCAS | 16442696PubMed |
[43] F. Pierard, A. Del Guerzo, A. Kirsch-De Mesmaeker, M. Demeunynck, J. Lhomme, Phys. Chem. Chem. Phys. 2001, 3, 2911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslCjtr8%3D&md5=7e6959639254951cce49a69b7636ae68CAS |
[44] F. M. O’Reilly, J. M. Kelly, J. Phys. Chem. B 2000, 104, 7206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWnuro%3D&md5=c7d91ec2c9438da1a0d5463f8332cc50CAS |
[45] R. B. Nair, C. J. Murphy, J. Inorg. Biochem. 1998, 69, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlWhsrw%3D&md5=f75d20ed3bd2b50c8ec790e414f72ff9CAS |
[46] Y. Xiong, X. F. He, X. H. Zou, J. Z. Wu, X. M. Chen, L. N. Ji, R. H. Li, J. Y. Zhou, K. B. Yu, J. Chem. Soc., Dalton Trans. 1999, 19,
| Crossref | GoogleScholarGoogle Scholar |
[47] C. V. Kumar, J. K. Barton, N. J. Turro, J. Am. Chem. Soc. 1985, 107, 5518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltF2hsLw%3D&md5=772226e8db756ccbadcb90728761e43fCAS |
[48] D. L. Boger, B. E. Fink, S. R. Brunette, W. C. Tse, M. P. Hedrick, J. Am. Chem. Soc. 2001, 123, 5878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOhtLg%3D&md5=992132c0299deaefcf775a0ef716dd58CAS | 11414820PubMed |
[49] S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, Biochemistry 1993, 32, 2573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1Sgu7c%3D&md5=f20e804caf486ada9bbf5672db1e715eCAS | 8448115PubMed |
[50] H. L. Chan, H. Q. Liu, B. C. Tzeng, Y. S. You, S. M. Peng, M. Yang, C. M. Che, Inorg. Chem. 2002, 41, 3161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1egsbY%3D&md5=ae6500f6184d293b6683599e267a7179CAS | 12054995PubMed |
[51] C. V. Kumar, E. H. Asuncion, J. Am. Chem. Soc. 1993, 115, 8547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFCht7o%3D&md5=6979d6182e506ac6b9faf6d34c02d784CAS |
[52] F. F. Leng, J. B., Chaires, M. J., F. F. Leng, J. B., Chaires, M. J., Nucleic Acids Res. 2003, 21, 6191.
| Crossref | GoogleScholarGoogle Scholar |
[53] P. P. Pellegrini, J. R. A. Wright, J. Chem. Soc., Dalton Trans. 2003, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KisLw%3D&md5=f4e1d50c125667ab0d2e26539dc714cbCAS |
[54] L. C. Xu, S. Shi, J. Li, S. Y. Liao, K. C. Zheng, L. N. Ji, Dalton Trans. 2008, 291.
| Crossref | GoogleScholarGoogle Scholar |
[55] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 1952, 20, 722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38XmsVensA%3D%3D&md5=b9f1de932864665bf867609e6d12cd28CAS |
[56] N. Kurita, K. Kobayashi, Comput. Chem. 2000, 24, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Gmt70%3D&md5=3524caa40186eef6cd985b269c31bc24CAS | 10816005PubMed |
[57] D. Reha, M. Kabelac, F. Ryjacek, J. Sponer, M. Elstner, S. Suhai, J. Am. Chem. Soc. 2002, 124, 3366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslamtrw%3D&md5=a81eed2fbbe01b4544c20d3f1f52c804CAS | 11916422PubMed |
[58] J. Li, L. C. Xu, J. C. Chen, K. Ch. Zheng, L. N. Ji, J. Phys. Chem. A 2006, 110, 8174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFens7c%3D&md5=797147a7c1a50b686ebd5de824d6dec7CAS | 16805505PubMed |
[59] M. E. Reinchmann, S. A. Rice, C. A. Thomas, P. Doty, J. Am. Chem. Soc. 1954, 76, 3047.
| Crossref | GoogleScholarGoogle Scholar |
[60] J. B. Chaires, N. Dattagupta, D. M. Crothers, Biochemistry 1982, 21, 3933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks1Kjtbs%3D&md5=660303d8d00ea34d47001e910f429fd3CAS | 7126524PubMed |
[61] X. H. Zou, B. H. Ye, H. Li, J. G. Liu, Y. Xiong, J. Chem. Soc., Dalton Trans. 1999, 1423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Sgu7g%3D&md5=39d51eb6313ca833fd210f2ad32014a4CAS |
[62] F. Gao, H. Chao, Y. F. Wei, Y. X. Yuan, B. Peng, Helv. Chim. Acta 2008, 91, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslSitrs%3D&md5=be9b87aacae1a529079a5516e16855a5CAS |
[63] A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=1620347e41220476771af9b117ee8e30CAS |
[64] A. Görling, Phys. Rev. A 1996, 54, 3912.
| Crossref | GoogleScholarGoogle Scholar | 9913938PubMed |
[65] L. F. Tan, S. Zhang, X. H. Liu, Y. D. Chen, X. W. Liu, J. Org. Chem. 2008, 693, 3387.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2kt7nE&md5=ba3430841be3df9eaf89167c01305472CAS |
[66] S. H. Fan, A. G. Zhang, K. Z. Wang, Eur. J. Inorg. Chem. 2009, 508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlCksLg%3D&md5=5394196da7366a983c2ed3094e036562CAS |
[67] M. N. Ackermann, L. V. Interrante, Inorg. Chem. 1984, 23, 3904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtl2gsrk%3D&md5=c7720a40da66f5f1dc990cce667aec8bCAS |
[68] A. M. Pyle, M. Y. Chiang, J. K. Barton, Inorg. Chem. 1990, 29, 4487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVertL0%3D&md5=c438a310c308e6d3b08c7d427dcacd3eCAS |