Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Histochemistry and ultrastructure of Campuloclinium chlorolepis (Asteraceae) tuberous roots accumulating fructan: evidences of functions other than reserve carbohydrate

Divina A. A. Vilhalva A , Angelo L. Cortelazzo A , A. L. Maria Angela M. Carvalho B and Rita de Cássia L. Figueiredo-Ribeiro B C
+ Author Affiliations
- Author Affiliations

A Departamento de Biologia Celular e Estrutural, Universidade Estadual de Campinas, Av. Bertrand Roussel s/n, Cep 13083-865, Campinas, SP, Brazil.

B Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, Caixa Postal 3005, Cep 01061-970, São Paulo, SP, Brazil.

C Corresponding author. Email: rita.cassia@pq.cnpq.br

Australian Journal of Botany 59(1) 46-52 https://doi.org/10.1071/BT10126
Submitted: 22 May 2010  Accepted: 14 December 2010   Published: 10 February 2011

Abstract

Campuloclinium chlorolepis (Baker), an herbaceous species of the Cerrado, accumulates inulin-type fructans in the tuberous roots. Plants were collected in the Cerrado and the roots analysed using light and scanning electron microscopy. The presence of fructans was assessed by specific stain reactions and by high performance anion exchange chromatography. Here, we report the localisation of protein, phenols and neutral polysaccharides in the tuberous roots after staining with different dyes generally used in cytochemical analyses. Results showed the presence of fructans inside and outside cells from all tissues of tuberous roots with the exception of the epidermis. When visualised by scanning electron microscopy, globular bodies consistent with typical inulin spherocrystals were clearly detected under polarised light. These globular bodies varied in size according to location, being smaller in the cortical tissue and larger in the central cylinder. The localisation of fructans outside the cell in several tissues of the tuberous roots clearly shown by histochemical and ultrastructural analyses lead to the hypothesis of interaction of fructose polymers with cell membrane and possibly their role in membrane stabilisation in plants subjected to stressing environmental conditions.


References

Asega AF, Nascimento JRO, Carvalho MAM (2010) Increased expression of fructan1-exohydrolase in rhizophores of Vernonia herbacea during sprouting and exposure to low temperature. Journal of Plant Physiology
Increased expression of fructan1-exohydrolase in rhizophores of Vernonia herbacea during sprouting and exposure to low temperature.Crossref | GoogleScholarGoogle Scholar | 20950891PubMed |

Bornet FRJ (1994) Undigestible sugars in food products. The Journal of Clinical Nutrition 59, 763S–769S.

Carvalho MAM, Dietrich SMC (1993) Variation in fructan content in the underground organs of Vernonia herbacea (Vell.) Rusby at different phenological phases. New Phytologist 123, 735–740.
Variation in fructan content in the underground organs of Vernonia herbacea (Vell.) Rusby at different phenological phases.Crossref | GoogleScholarGoogle Scholar |

Carvalho MAM, Zaidan LBP, Dietrich SMC (1997) Growth and fructan content of plants of Vernonia herbacea (Asteraceae) regenerated from rhizophores. New Phytologist 136, 153–161.
Growth and fructan content of plants of Vernonia herbacea (Asteraceae) regenerated from rhizophores.Crossref | GoogleScholarGoogle Scholar |

Carvalho MAM, Asega AF, Figueiredo-Ribeiro RCL (2007) Fructans in Asteraceae from the Brazilian cerrado. In ‘Recent advances in fructooligosaccharides research’. (Eds N Shiomi, N Benkeblia, S Onodera) pp. 69–91. (Research Signpost: Kerala)

Dias-Tagliacozzo GM, Figueiredo-Ribeiro RCL, Carvalho MAM, Dietrich SMC (1999) Fructan variation in the rhizophores of Vernonia herbacea (Vell.) Rusby, as influenced by temperature. Revista Brasileira de Botânica 22, 267–273.

Figueiredo-Ribeiro RCL, Dietrich SMC, Chu EP, Carvalho MAM, Vieira CCJ, Graziano TT (1986) Reserve carbohydrates in underground organs of native Brazilian plants. Revista Brasileira de Botânica 9, 156–166.

Figueiredo-Ribeiro RCL, Isejima EM, Dias-Tagliacozzo GM, Carvalho MAM, Dietrich SMC (1991) The physiological significance of fructan accumulation in Asteraceae from the cerrado. Ciencia e Cultura 43, 443–446.

Frehner M, Keller F, Wienken A (1984) Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L.). Journal of Plant Physiology 116, 197–208.

Hayashi AH, Appezzato-da-Glória B (2005) The origin and anatomy of rhizophores in Vernonia herbacea and V. platensis (Asteraceae) from the Brazilian cerrado. Australian Journal of Botany 53, 273–279.
The origin and anatomy of rhizophores in Vernonia herbacea and V. platensis (Asteraceae) from the Brazilian cerrado.Crossref | GoogleScholarGoogle Scholar |

Hendry GAF, Wallace RK (1993) The origin, distribution, and evolutionary significance of fructans. In ‘Science and Technology of Fructans’. (Eds M Suzuki, NJ Chatterton) pp. 119–139. (CRC Press: Boca Raton, FL)

Hincha DK, Livingston DP, Premakumar R, Zuther E, Obel N, Cacela C, Heyer AG (2007) Fructans from oat and rye: composition and effects on membrane stability during drying. Biochimica et Biophysica Acta 1768, 1611–1619.
Fructans from oat and rye: composition and effects on membrane stability during drying.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVyjtLk%3D&md5=e5b0382b15ad997827320a6482e26578CAS | 17462587PubMed |

Hirayama M, Nishizawa K, Hidaka H (1993) Production and characteristics of fructo-oligosaccharides. In ‘Inulin and inulin-containing crops’. (Ed. A Fuchs) pp. 347–353. (Elsevier: Amsterdam)

Isejima EM, Figueiredo-Ribeiro RCL (1993) Fructan variations in tuberous roots of Viguiera discolor Baker (Asteraceae): the influence of phenology. Plant & Cell Physiology 34, 723–727.

Jermyn MA (1956) A new method for the determination of ketohexoses in presence of aldohexoses. Nature 177, 38–39.
A new method for the determination of ketohexoses in presence of aldohexoses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XjsFKjtg%3D%3D&md5=174cfa129f24f0c4d6092460d0d0754aCAS |

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill: New York)

Kaeser W (1983) Ultrastructure of storage cells in Jerusalem Artichoke tubers (Helianthus tuberosus L.) Vesicle formation during inulin synthesis. Z. Planzenphysiologie 111, 253–260.

Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. The Journal of Cell Biology 27, 137–138.

Koroleva OA, Tomos AD, Farrar JF, Roberts P, Pollock CJ (2000) Tissue distribution of primary metabolism between epidermal, mesophyll and parenchymatous bundle sheath cells in barley leaves. Australian Journal of Plant Physiology 27, 747–755.
Tissue distribution of primary metabolism between epidermal, mesophyll and parenchymatous bundle sheath cells in barley leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1yksLw%3D&md5=cde62074f84e4def20ae1ad6a51d2a6bCAS |

Livingston D, Henson CAP (1998) Apoplastic sugars, fructans, fructan-exohydrolase and invertase in winter oat: responses to second-phase cold hardening. Plant Physiology 116, 403–408.
Apoplastic sugars, fructans, fructan-exohydrolase and invertase in winter oat: responses to second-phase cold hardening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGitg%3D%3D&md5=ca203744da5132fb73b1bc246938c641CAS |

Machado SR, Oliveira DMT, Dip MR, Menezes NL (2004) Morfo-anatomia do sistema subterrâneo de Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson (Asteraceae). Revista Brasileira de Botânica 27, 115–123.

Maia V (1979) ‘Técnica histológica.’ 2nd edn. (Atheneu Editora: São Paulo, Brazil)

Meier H, Reid JSG (1982) Reserve polysaccharides other than starch in higher plants. In ‘Encyclopedia of Plant Physiology New Series, V 13A – Plant Carbohydrates I’. (Eds FA Loewus, W Tanner) pp. 418–471. (Springer-Verlag: Heidelberg)

Muir JG, Shepherd SJ, Rosella O, Rose R, Barrett JS, Gibson PR (2007) Fructan and free fructose content of common Australian vegetables and fruit. Journal of Agricultural and Food Chemistry 55, 6619–6627.
Fructan and free fructose content of common Australian vegetables and fruit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsF2jsLc%3D&md5=9cbf81b1b03a8141cd90690af8ea4cc3CAS | 17625872PubMed |

Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology 107, 125–130.
Improved performance of transgenic fructan-accumulating tobacco under drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtVOms7Y%3D&md5=9809ffe74c91cdb9d4a193926d8e1ee9CAS | 12228347PubMed |

Pilon-Smits EAH, Terry N, Sears T, Van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiology and Biochemistry 37, 313–317.
Enhanced drought resistance in fructan-producing sugar beet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvF2qu7s%3D&md5=4dd0de72da4c81d8e2f800dfcac92afaCAS |

Pizzolato TD, Lillie RD (1973) Mayer’s tannic acid-ferric chloride stain for mucins. The Journal of Histochemistry and Cytochemistry 21, 56–64.

Portes MT, Figueiredo-Ribeiro RCL, Carvalho MAM (2008) Low temperature and defoliation affect fructan metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. Journal of Plant Physiology 165, 1572–1581.
Low temperature and defoliation affect fructan metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOqu7jI&md5=2447ebe7b99baf8a033136c1517cc8a2CAS | 18342987PubMed |

Sajo MG, Menezes NL (1986) Anatomia do rizóforo de espécies de Vernonia Screb. (Compositae) da Serra do Cipó, MG. Revista Brasileira de Biologia 46, 189–196.

Tertuliano MF, Figueiredo-Ribeiro RCL (1993) Distribution of fructose polymers in herbaceous species of Asteraceae from the cerrado. New Phytologist 123, 741–749.
Distribution of fructose polymers in herbaceous species of Asteraceae from the cerrado.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFensrk%3D&md5=8a94e6b7178c427cbaefc6be6557848eCAS |

Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. Journal of Experimental Botany 59, 2905–2916.
Plant fructans in stress environments: emerging concepts and future prospects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslalsL4%3D&md5=caaf07c8938872bb65e98a2bc5376dcfCAS | 18603617PubMed |

Valluru R, Lammens W, Claupein W, Van den Ende W (2008) Freezing tolerance by vesicle-mediated fructan transport. Trends in Plant Science 13, 409–414.
Freezing tolerance by vesicle-mediated fructan transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsValuro%3D&md5=beb15a179c661e0b36b0acf6bfbed664CAS | 18619894PubMed |

Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A (2000) Cloning and functional analysis of chicory root fructan 1-exohydrolase I (1-FEHI): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. The Plant Journal 24, 447–456.
Cloning and functional analysis of chicory root fructan 1-exohydrolase I (1-FEHI): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWhuw%3D%3D&md5=c7529826b2b2db630fc623fa5f6db1deCAS | 11115126PubMed |

Van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A (2005) Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum). New Phytologist 166, 917–932.
Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFSltLg%3D&md5=1e0f0449c99034a828f5bb3aef318925CAS | 15869652PubMed |

Vidal BC (1970) Dichroism in collagen bundles stained with xylidine ponceau 2R. Annales de Histochimie 15, 289–296.

Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification: micro-espectrophotometric evaluation and macromolecular orientation. Cellular and Molecular Biology 22, 45–64.

Vieira CCJ, Figueiredo-Ribeiro RCL (1993) Fructose-containing carbohydrates in the tuberous roots of Gomphrena marcocephala St.-Hil. (Amaranthaceae) at different phenological phases. Plant, Cell & Environment 16, 919–928.
Fructose-containing carbohydrates in the tuberous roots of Gomphrena marcocephala St.-Hil. (Amaranthaceae) at different phenological phases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVOgs78%3D&md5=d7d93c49b64d0859cb128c842c8ba393CAS |

Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiology 120, 351–360.
Fructan: more than a reserve carbohydrate?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWrurc%3D&md5=f67466cd840b1a6617ec0a97f3b8b9f7CAS | 10364386PubMed |

Vilhalva DAA, Appezzato-da-Glória B (2006) Morfoanatomia da raiz tuberosa de Vernonia oxylepis Sch. Bip. in Mart. ex Baker – Asteraceae. Acta Botânica Brasílica 20, 591–598.
Morfoanatomia da raiz tuberosa de Vernonia oxylepis Sch. Bip. in Mart. ex Baker – Asteraceae.Crossref | GoogleScholarGoogle Scholar |

Wang N, Nobel PS (1998) Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti. Plant Physiology 116, 709–714.
Phloem transport of fructans in the crassulacean acid metabolism species Agave deserti.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1aisrc%3D&md5=36e9b98af150df84a0ddf4094629ccb6CAS | 9490769PubMed |