Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Development and utilisation of conserved-intron scanning marker in sugarcane

M. Suhail Khan A , Sonia Yadav A , Sangeeta Srivastava A , M. Swapna A , A. Chandra B and Ram K. Singh A C
+ Author Affiliations
- Author Affiliations

A Division of Crop Improvement, Indian Institute of Sugarcane Research, Rae Bareli Road, Lucknow 226002, Uttar Pradesh, India.

B Division of Physiology and Biochemistry, Indian Institute of Sugarcane Research, Rae Bareli Road, Lucknow 226002, Uttar Pradesh, India.

C Corresponding author. Email: ikrps@yahoo.com

Australian Journal of Botany 59(1) 38-45 https://doi.org/10.1071/BT10188
Submitted: 26 July 2010  Accepted: 9 December 2010   Published: 10 February 2011

Abstract

Genetic dissection of economic traits in sugarcane requires sufficiently informative molecular markers that are currently lacking in this highly valued crop. Through comparative analysis of publicly available expressed-sequence data of sugarcane, sorghum and barley, and the whole rice genome-sequence survey, novel functional markers based on conserved-intron scanning primers (CISP) were developed and evaluated in different accessions across various taxonomic ranks of sugarcane. Polymorphism was moderate (55.2%), whereas 94.7% of the markers developed amplified fragments in selected genotypes. Mean polymorphism information content value was 0.582 (range 0.320–0.715), which was comparable to that with genic microsatellite markers (0.52) but lower than that with EST-SSR (0.73). Genetic-similarity coefficient ranged from 0.39 to 0.95, indicating variable levels of divergence depending on the taxonomic rank assessed. Cluster analysis revealed that the genotypes grouped in accordance with the taxonomical classification of sugarcane, with a relatively good support from a Mantel’s test (r = 0.847) and a moderate bootstrap value (65–89%). The CISP markers reported in the present study have potential utility for genetic-diversity analysis and application in sugarcane-breeding programs.


References

Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics 110, 789–801.
A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislantLo%3D&md5=664abdaff499602baaefbb1d36ec5effCAS | 15700149PubMed |

Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36, 181–186.
Optimizing parental selection for genetic linkage maps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Kktrs%3D&md5=d638218e04310433d81f98b9dbc5266bCAS | 18469981PubMed |

Chee P, Rong J, Williams-Coplin D, Schulze SR, Paterson AH (2004) EST-derived PCR-based markers for functional gene homologues in cotton. Genome 47, 449–462.
EST-derived PCR-based markers for functional gene homologues in cotton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVShu70%3D&md5=bf572b85c208ed2a61b34d941e2700a0CAS | 15190362PubMed |

Cordeiro GM, Maguire TL, Henry RJ, Edwards KJ (1999) Optimisation of a microsatellite enrichment technique in Saccharum spp. Plant Molecular Biology Reporter 17, 225–229.
Optimisation of a microsatellite enrichment technique in Saccharum spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCnuw%3D%3D&md5=8ac0e9d1c0e644160af08249f860175dCAS |

Cordeiro GM, Taylor GO, Henry RJ (2000) Characterization of microsatellite markers from sugarcane (Saccharum spp.) a highly polyploid species. Plant Science 155, 161–168.
Characterization of microsatellite markers from sugarcane (Saccharum spp.) a highly polyploid species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1aqtbg%3D&md5=800e1d2642e62261abb416b13da415caCAS | 10814819PubMed |

Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum. Plant Science 160, 1115–1123.
Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to Erianthus and sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFGjurw%3D&md5=7718143645e66fa08ec6bbc07870f9c1CAS | 11337068PubMed |

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–14.

Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiology 140, 1183–1191.
A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslyqurs%3D&md5=72f0e85fad7396268b16f9fac4040f10CAS | 16607031PubMed |

Fredslund J, Madsen LH, Hougaard BK, Sandal N, Stougaard J, Bertioli D, Schauser L (2006a) GeMprospector – online design of cross-species genetic marker candidates in legumes and grasses. Nucleic Acids Research 34, W670–W675.
GeMprospector – online design of cross-species genetic marker candidates in legumes and grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1yiu7w%3D&md5=89ab34d995455b40960d62e6636ba369CAS | 16845095PubMed |

Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L (2006b) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7, 207–214.
A general pipeline for the development of anchor markers for comparative genomics in plants.Crossref | GoogleScholarGoogle Scholar | 16907970PubMed |

Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282, 656–659.
Plant comparative genetics after 10 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFOrtrg%3D&md5=3e75c18d5c653ce726cf4c048bdf8845CAS | 9784118PubMed |

Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li Z-K (2003) Convergent evolution of perenniality in rice and sorghum. Proceedings of the National Academy of Sciences, USA 100, 4050–4054.
Convergent evolution of perenniality in rice and sorghum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFSqurY%3D&md5=fc098c5d17161efdcd1515e767f1011fCAS |

IRGSP (2005) The map based sequence of rice genome. Nature 436, 793–800.
The map based sequence of rice genome.Crossref | GoogleScholarGoogle Scholar | 16100779PubMed |

Le Cunff L, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ~ 12x ~ 115). Genetics 180, 649–660.
Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n ~ 12x ~ 115).Crossref | GoogleScholarGoogle Scholar | 18757946PubMed |

Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 14, 391–411.

Lu YH, D’Hont A, Walker DJT, Rao PS, Feldmann P, Glaszmann JD (1994) Relationships among ancestoral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78, 7–18.

Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN (2002) Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica 127, 219–225.
Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVKqsrs%3D&md5=045e2690479bf433f945addb05191464CAS |

Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist W, Garcia AA, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52, 191–209.
Characterization of new polymorphic functional markers for sugarcane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1agtL4%3D&md5=f6ab3f7f923d4f4874c08980a15ee17aCAS | 19234567PubMed |

Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics 118, 327–338.
Informative genomic microsatellite markers for efficient genotyping applications in sugarcane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymurrK&md5=7ba9cfd01824914295e3edcff22c5eceCAS | 18946655PubMed |

Paterson AH, Bowers JE, Bruggmann R, Inna Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Stephen Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman , Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsa DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556.
The Sorghum bicolor genome and the diversification of grasses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOmsb4%3D&md5=1186397b5999d387b939f65923e74149CAS | 19189423PubMed |

Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47, 795–804.
Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyksLnJ&md5=8c7e21b79df65b4c257ed1e8090e49a7CAS | 15499394PubMed |

Quax-Jeuken Y, Quax W, van Rens G, Khan PM, Bloemendal H (1985) Complete structure of the alpha B-crystallin gene conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes. Proceedings of the National Academy of Sciences, USA 82, 5819–5823.
Complete structure of the alpha B-crystallin gene conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslehsLc%3D&md5=d27badeaa740e4636ef19d547e3b5094CAS |

Rohlf FJ (1998) ‘NTSYS-pc. numerical taxonomy and multivariate analysis system. Version 2.0.’ (Applies Biostatistics Inc.: Setauket, NY)

Rossi M, Araujo PGF, Paulet O, Garsmeur VM, Dias H, Chen MA, Van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Molecular Genetics and Genomics 269, 406–419.
Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvF2gtbc%3D&md5=1a8a61554d9faca4909c1e79a3871ee2CAS | 12733061PubMed |

Schnable PS, Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Buren PV, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome. Complexity, diversity, and dynamics. Science 326, 1112–1115.
The B73 maize genome. Complexity, diversity, and dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVentLvL&md5=8f5e76a286ad34bd171ed77921c9258cCAS | 19965430PubMed |

Selvi A, Nair NV, Balasundaram N, Mohapatra T (2003) Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome 46, 394–403.
Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlKls74%3D&md5=d224bb5821daddd24a2785c915bda9c3CAS | 12834055PubMed |

Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2005) Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP. Crop Science 45, 1750–1757.
Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrt7nJ&md5=aaa73b7d28a090dbd6ff3bd0c050e67eCAS |

Selvi A, Nair NV, Noyer JL, Singh NK, Balasundaram N, Bansal KC, Koundal KR, Mohapatra T (2006) AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus. Genetic Resources and Crop Evolution 53, 831–842.
AFLP analysis of the phenetic organization and genetic diversity in the sugarcane complex, Saccharum and Erianthus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFahsbY%3D&md5=3b3fcdaab1dbc9db04de267b6b16b070CAS |

Simko I, Costanzo S, Haynes KG, Christ BJ, Jones RW (2004) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics 108, 217–224.
Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFCntQ%3D%3D&md5=811524cf7c595836be9da766799889eeCAS | 14523522PubMed |

Wang Q, Zhang B, Lu Q (2009) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Molecular Biology Reporter 27, 139–143.
Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKmtLfK&md5=fc6a9ffd7746a2dece0086788334cf63CAS |

Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theoretical and Applied Genetics 114, 155–164.
Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltrnK&md5=bb922bd8f2a929ca87f9274feacfbf33CAS | 17047910PubMed |

Yadav OP, Mitchell SE, Fulton TM, Kresovich S (2008) Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. Journal of SAT Agricultural Research 6,

Yap I, Nelson RJ (1996) Winboot. A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI Discussion paper series no. 14. International Rice Research Institute, Manila, Philippines.

Zeid M, Yu JK, Goldowitz I, Dentond ME, Costich DE, Jayasuriya CT, Saha M, Elshire R, Benscher D, Breseghello F, Munkvold J, Varshney RK, Belay G, Sorrells ME (2010) Cross-amplification of EST-derived markers among 16 grass species. Field Crops Research 118, 28–35.
Cross-amplification of EST-derived markers among 16 grass species.Crossref | GoogleScholarGoogle Scholar |