Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Cytogenetics in the age of molecular genetics

Peng Zhang A C , Bernd Friebe B , Bikram Gill B and R. F. Park A
+ Author Affiliations
- Author Affiliations

A Plant Breeding Institute, University of Sydney, 107 Cobbitty Road, Camden, NSW 2570, Australia.

B Wheat Genetics Resource Center, Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, USA.

C Corresponding author. Email: pengzhang@camden.usyd.edu.au

Australian Journal of Agricultural Research 58(6) 498-506 https://doi.org/10.1071/AR07054
Submitted: 9 February 2007  Accepted: 17 April 2007   Published: 26 June 2007

Abstract

From the beginning of the 20th Century, we have seen tremendous advances in knowledge and understanding in almost all biological disciplines, including genetics, molecular biology, structural and functional genomics, and biochemistry. Among these advances, cytogenetics has played an important role. This paper details some of the important milestones of modern cytogenetics. Included are the historical role of cytogenetics in genetic studies in general and the genetics stocks produced using cytogenetic techniques. The basic biological questions cytogenetics can address and the important role and practical applications of cytogenetics in applied sciences, such as in agriculture and in breeding for disease resistance in cereals, are also discussed. The goal of this paper is to show that cytogenetics remains important in the age of molecular genetics, because it is inseparable from overall genome analysis. Cytogenetics complements studies in other disciplines within the field of biology and provides the basis for linking genetics, molecular biology and genomics research.

Additional keywords: chromosome banding, fluorescence in situ hybridisation (FISH), deletion lines, physical mapping, chromosome landmark, alien gene introgression.


Acknowledgments

This research was supported by Grains Research and Development Corporation, the Kansas Wheat Commission, and a special USDA grant to the Wheat Genetics Resource Center. We thank W. John Raupp, Duane Wilson, and Sami Hoxha for their excellent assistance; and Prof. Robert McIntosh and Dr Harbans Bariana for beneficial discussion.


References


Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD , et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Akhunov ED, Goodyear AW, Geng S, Qi L, Echalier B , et al. (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research 13, 753–763.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Appels R, Dennis ES, Smyth DR, Peacock WJ (1981) Two repeated DNA sequences from the heterochromatic regions of rye (Secale cereale) chromosomes. Chromosoma 84, 265–277.
Crossref | GoogleScholarGoogle Scholar | open url image1

Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105, 261–268.
PubMed |
open url image1

Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Boveri T (1902) Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandl. Deut. Physiol. Med. Gesellsch. zur Würzburg 35, 67–90. open url image1

Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M , et al. (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168, 625–637.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delaney D, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995a) Cytogenetically based physical map of the group-2 chromosomes of wheat. Theoretical and Applied Genetics 91, 568–573. open url image1

Delaney D, Nasuda S, Endo TR, Gill BS, Hulbert SH (1995b) Cytogenetically based physical map of the group-3 chromosomes of wheat. Theoretical and Applied Genetics 91, 780–782. open url image1

Doležel J , Šafář J , Janda J , Bartoš J , Kubaláková M , Číhalíková J , Šimková H , Sourdille P , Bernard M , Chalhoub B (2003) Development of flow cytogenetics for wheat genome mapping. In ‘Proceedings of the 10th International Wheat Genetics Symposium’. (Eds NE Pogna, M Romano, EA Pogna, G Galterio) pp. 65–68. (Paestum: Italy)

Dong F, Miller T, Jackson SA, Wang GL, Ronald PC, Jiang J (1998) Rice (Oryza sativa) centromeric regions consist of complex DNA. Proceedings of the National Academy of Sciences of the United States of America 95, 8135–8140.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Australian Journal of Agricultural Research 58, 545–549.
Crossref |
open url image1

Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR , et al. (1999) The DNA sequence of human chromosome 22. Nature 402, 489–495.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Eisenstein M (2005) A look back: FISH still fresh after 25 years. Nature Methods 2, 236.
Crossref | GoogleScholarGoogle Scholar | open url image1

Endo TR (1978) On the Aegilops chromosomes having gametocidal action on common wheat. In ‘Proceedings of the 5th International Wheat Genetics Symposium’. (Ed. S Ramanujan) pp. 306–314. (Indian Society of Genetics and Plant Breeding: New Delhi)

Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Japanese Journal of Genetics 65, 135–152.
Crossref | GoogleScholarGoogle Scholar | open url image1

Endo TR, Gill BS (1996) The deletion stocks of common wheat. Journal of Heredity 87, 295–307. open url image1

Faris JD, Friebe B, Gill BS (2002) Wheat genomics: Exploring the polyploidy model. Current Genomics 3, 577–591.
Crossref | GoogleScholarGoogle Scholar | open url image1

Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154, 823–835.
PubMed |
open url image1

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America 100, 15253–15258.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44, 266–274.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Francki MG, Berzonsky WA, Ohm HW, Anderson JM (2001) Physical location of a HSP70 homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.). Theoretical and Applied Genetics 104, 184–191. open url image1

Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridisation to extended DNA fibres. The Plant Journal 9, 421–430.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics 86, 141–149.
Crossref | GoogleScholarGoogle Scholar | open url image1

Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91, 59–87. open url image1

Friebe B, Kynast RG, Zhang P, Qi L, Dhar M, Gill BS (2001) Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Research 9, 137–146.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Friebe B, Larter EN (1988) Identification of a complete set of isogenic wheat/rye D genome substitution lines by means of Giemsa C-banding. Theoretical and Applied Genetics 76, 473–479.
Crossref | GoogleScholarGoogle Scholar | open url image1

Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theoretical and Applied Genetics 83, 775–782. open url image1

Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences of the United States of America 63, 378–383.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL , et al. (2004) A workshop report on wheat genome sequencing: International genome research on wheat consortium. Genetics 168, 1087–1096.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34, 830–839. open url image1

Gill KS, Gill BS, Endo TR, Boiko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143, 1001–1012.
PubMed |
open url image1

Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144, 1883–1891.
PubMed |
open url image1

Gill BS, Kimber G (1974a) The giemsa C-banded karyotype of rye. Proceedings of the National Academy of Sciences of the United States of America 71, 1247–1249.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gill BS, Kimber G (1974b) Giemsa C-banding and the evolution of wheat. Proceedings of the National Academy of Sciences of the United States of America 71, 4086–4090.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hohmann U, Endo TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Molecular Genetics and Genomics 245, 644–653. open url image1

Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of a rust-resistance gene from bread wheat’s large polyploid genome. Genetics 164, 655–664.
PubMed |
open url image1

Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41, 566–572.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jiang J, Gill BS (1994a) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37, 717–725. open url image1

Jiang J, Gill BS (1994b) New 18S–26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103, 179–185.
PubMed |
open url image1

Jiang J, Gill BS (1994c) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Research 2, 59–64.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Jiang J, Nasuda S, Dong F, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC (1996) A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proceedings of the National Academy of Sciences of the United States of America 93, 14210–14213.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Knott DR (1961) The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Canadian Journal of Plant Science 41, 109–123. open url image1

Knott DR (1968) Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Canadian Journal of Genetics and Cytology 10, 695–696. open url image1

Knott DR (1989) The effect of transfers of alien genes for leaf rust resistance on the agronomic and quality characteristics of wheat. Euphytica 44, 65–72.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annual Review of Genetics 33, 479–532.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America 79, 4381–4385.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lapitan NLV, Sears EG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theoretical and Applied Genetics 68, 547–554.
Crossref | GoogleScholarGoogle Scholar | open url image1

Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Molecular Biology Reporter 7, 150–158. open url image1

Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the α-amylase-2 gene in barley (Hordeum vulgare). Genome 36, 517–523. open url image1

Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B , et al. (2004) A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168, 665–676.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Science 40, 216–225. open url image1

Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theoretical and Applied Genetics 64, 239–248.
Crossref | GoogleScholarGoogle Scholar | open url image1

McIntosh RA (1991) Alien sources of disease resistance in bread wheats. In ‘Proceedings of Dr. H. Kihara Memorial International Symposium on Cytoplasmic Engineering in Wheat. Nuclear and Organellar Genomes of Wheat Species’. (Eds T Sasakuma, T Kinoshita) pp. 320–332.

McIntosh RA , Wellings CR , Park RF (1995) ‘Wheat rusts. An atlas of resistance genes.’ (CSIRO Publishing: Melbourne)

McIntosh RA , Yamazaki Y , Devos KM , Dubcovsky J , Rogers WJ , Appels R (2003) Catalogue of gene symbols for wheat. In ‘Proceedings of 10th International Wheat Genetics Symposium’. Vol. 4. (Eds NE Pogna, M Romanò, EA Pogna, G Galterio) (Paestum: Italy)

Mettin D , Bluthner WD , Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In ‘Proceedings of 4th International Wheat Genetics Symposium’. Columbia, Missouri (Eds ER Sears, LMS Sears) pp. 179–184.

Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of wheat homoeologous group-4 chromosomes. Theoretical and Applied Genetics 90, 1007–1011.
Crossref | GoogleScholarGoogle Scholar | open url image1

Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theoretical and Applied Genetics 96, 832–839.
Crossref | GoogleScholarGoogle Scholar | open url image1

Morgan TH , Sturtevant AH , Muller HJ , Bridges CB (1915) ‘The mechanism of Mendelian heredity.’ (Henry Holt and Co.: New York)

Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat. Journal of Heredity 81, 290–295. open url image1

Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36, 489–494. open url image1

Munkvold JD, Greene RA, Bermudez-Kandianis CE, La Rota CM, Edwards H , et al. (2004) Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168, 639–650.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Naranjo T, Roca A, Goicoechea PG, Giraldez R (1987) Arm homoeology of wheat and rye chromosomes. Genome 29, 873–882. open url image1

Painter TS (1933) A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78, 585–586.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-color FISH. Genome 40, 589–593. open url image1

Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S , et al. (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168, 609–623.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proceedings of the National Academy of Sciences of the United States of America 83, 2934–2938.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Pologe LG, Ravetch JV (1988) Large deletions result from breakage and healing of P. falciparum chromosomes. Cell 55, 869–874.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. The Plant Journal 16, 721–728.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Qi LL, Echalier B, Chao S, Lazo GR, Butler GE , et al. (2004) A chromosome bin map of 16 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701–712.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. Journal of Heredity 76, 78–81. open url image1

Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Riley R, Chapman V, Johnson R (1968) Introduction of yellow-rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217, 383–384.
Crossref | GoogleScholarGoogle Scholar | open url image1

Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149, 2007–2023.
PubMed |
open url image1

Šafář J, Bartoš J, Janda J, Bellec A, Kubaláková M , et al. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. The Plant Journal 39, 960–968.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schmidt T, Heslop-Harrison JS (1996) High resolution mapping of repetitive DNA by in situ hybridization: Molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Molecular Biology 30, 1099–1114.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4, 535–550.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sears ER (1954) The aneuploids of common wheat. Research Bulletin University of Missouri Agricultural Experiment Station 572, 1–58. open url image1

Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposia in Biology 9, 1–22. open url image1

Sears ER (1966 a) Nullisomic-tetrasomic combinations in hexaploid wheat. In ‘Chromosome Manipulations and Plant Genetics. 10th International Botanical Congress’. (Eds R Riley, KR Lewis) pp. 29–45. (Plenum Press: New York)

Sears ER (1966b) Chromosome mapping with the aid of telocentrics. In ‘Proceedings of the 2nd International Wheat Genetics Symposium’. Hereditas Suppl. 2, 370–381. open url image1

Sears ER (1981) Transfer of alien genetic material to wheat. In ‘Wheat science—today and tomorrow’. (Eds LT Evans, WJ Peacock) pp. 75–89. (Cambridge University Press: Cambridge, UK)

Sears ER (1983) The transfer to wheat of interstitial segment of alien chromosomes. In ‘Proceedings of the 6th International Wheat Genetics Symposium’. (Ed. S Sakamoto) pp. 5–12.

Sears ER (1993) Use of radiation to transfer alien segments to wheat. Crop Science 33, 897–901. open url image1

Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Canadian Journal of Genetics and Cytology 8, 137–143. open url image1

Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32, 17–31.
Crossref | GoogleScholarGoogle Scholar | open url image1

Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smith EL, Schlehuber AM, Young HC, Edwards LH (1968) Registration of Agent wheat. Crop Science 8, 511–512. open url image1

Sutton WS (1903) The chromosomes in heredity. The Biological Bulletin 4, 231–251.
Crossref | GoogleScholarGoogle Scholar | open url image1

The TT , Latter BDH , McIntosh RA , Ellison FW , Brennan PS , Fisher J , Hollamby GJ , Rathjen AJ , Wilson RE (1988) Grain yields of near-isogenic lines with added genes for stem rust resistance. In ‘Proceedings of the 7th International Wheat Genetics Symposium’. (Eds TM Miller, RMD Koebner) (Institute of Plant Science Research: Cambridge, UK)

Vershinin AV, Schwarzacher T, Heslop-Harrison JS (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell 7, 1823–1833.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Viegas-Pequignot E, Berrard S, Brice A, Apiou F, Mallet J (1991) Localization of a 900-bp-long fragment of the human choline acetyltransferase gene to 10q11.2 by non-radioactive in situ hybridization. Genomics 9, 210–212.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vrána J, Kubaláková M, Šimková H, Číhalíková J, Lysák MA, Doležel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041.
PubMed |
open url image1

Watson JD, Crick FHC (1953) Molecular structure of nuclei acids. A structure for deoxyribose nuclei acid. Nature 171, 737–738.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weng Y, Tuleen NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L. em Thell.). Theoretical and Applied Genetics 100, 519–527. open url image1

Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Research 22, 4922–4931.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America 100, 6263–6268.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zeller FJ (1973) 1B/1R wheat–rye chromosome substitutions and translocations. In ‘Proceedings of 4th International Wheat Genetics Symposium’. Columbia, Missouri (Eds ER Sears, LMS Sears) pp. 209–221.

Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110, 335–344.
PubMed |
open url image1

Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112, 288–299.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang P, Li W, Friebe B, Gill BS (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47, 979–987.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhang W, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theoretical and Applied Genetics 111, 573–582.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1