Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Wheat rust resistance research at CSIRO

Jeffrey G. Ellis A B , Rohit Mago A , Raja Kota A , Peter N. Dodds A , Helen McFadden A , Greg Lawrence A , Wolfgang Spielmeyer A and Evans Lagudah A
+ Author Affiliations
- Author Affiliations

A CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia.

B Corresponding author. Email: jeff.ellis@csiro.au

Australian Journal of Agricultural Research 58(6) 507-511 https://doi.org/10.1071/AR06151
Submitted: 10 May 2006  Accepted: 7 September 2006   Published: 26 June 2007

Abstract

Although chemical control is available for rust diseases in wheat, economic and environmental factors favour genetic solutions. Maintenance and improvement of levels of resistance and durability of the genetic control of the 3 wheat rust diseases will occur with the application of DNA markers for pyramiding resistance genes. Information about the molecular basis of rust resistance, including durable, adult-plant resistance, coming from studies in model species such as flax and flax rust and from studies of wheat and barley, will provide knowledge for new biotechnological approaches to rust resistance. Increasing cereal gene sequence data will improve the efficiency of cloning disease resistance genes and, together with the rapid progress in understanding the molecular basis of rust resistance, will make it possible to construct transgenic plants with multiple rust resistance genes at a single locus, which will provide efficient breeding and increased durability of rust resistance.

Additional keywords: rust resistance, avirulence, adult plant resistance, Ug99.


Acknowledgments

The work described here has been carried out in the Australian Cereal Rust Control Program, a collaborative program involving The University of Sydney, The University of Adelaide, CIMMYT, and CSIRO with the support of the Grains Research and Development Council.


References


Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG (1997) Inactivation of a rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. The Plant Cell 9, 641–651.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ayliffe MA, Pryor AJ (2007) Activation tagging in plants—generation of novel, gain-of-function mutations. Australian Journal of Agricultural Research 58, 490–497.
Crossref |
open url image1

Biffin RH (1905) Mendels laws of inheritance and wheat breeding. Journal of Agricultural Science 1, 4–18. open url image1

Birch PR, Rehmany AP, Prtichard I, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology 14, 8–11.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theoretical and Applied Genetics 100, 1095–1099.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brueggeman R, Rostoks N, Kudra D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America 99, 9328–9333.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Catanzariti A-M, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. The Plant Cell 18, 243–256.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor AJ (1999) The isolation and mapping of disease resistance gene analogs in maize. Molecular Plant-Microbe Interactions 11, 968–978.
Crossref |
open url image1

Dodds P, Lawrence GJ, Ellis JG (2001b) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. The Plant Journal 27, 439–453.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dodds PN, Catanzariti AM, Lawrence GJ, Ellis JG (2007) Avirulence proteins of rust fungi: penetrating the host-haustorium barrier. Australian Journal of Agricultural Research 58, 512–517.
Crossref |
open url image1

Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed haustoria and their products are recognized inside plant cells. The Plant Cell 16, 755–768.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dodds PN, Lawrence GJ, Ellis JG (2001a) Six amino acid changes confined to the leucine-rich repeat B-Strand/B-Turn Motif Determine the difference between the P and P2 rust resistance specificities in flax. The Plant Cell 13, 163–178.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Australian Journal of Agricultural Research 58, 545–549.
Crossref |
open url image1

Ellis JG, Catanzariti A-M, Dodds PN (2006) The problem of how fungal and oomycete avirulence proteins enter plant cells. Trends in Plant Science 11, 61–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America 100, 15253–15258.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hare RA (1997) Characterization and inheritance of adult plant stem rust resistance in durum wheat. Crop Science 37, 1094–1098. open url image1

Hare RA, McIntosh RA (1979) Genetic and cytogenetic studies of durable adult-plant resistances in ‘Hope’ and related cultivars to wheat rust. Zeitschrift fuer Pflanzenzuechtung 83, 350–367. open url image1

Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164, 655–664.
PubMed |
open url image1

Kota R, Spielmeyer RA, McIntosh RA, Lagudah ES (2006) fine genetic mapping fails to dissiciate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticium aestivum L.). Theoretical and Applied Genetics 112, 492–499.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics 114, 21–30.
Crossref | PubMed |
open url image1

Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell 7, 1195–1206.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lukaszewski AJ (2000) Manipulation of the 1RS-1BL translocation in wheat by induced homoeologous recombination. Crop Science 40, 216–225. open url image1

Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005b) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theoretical and Applied Genetics 111, 496–504.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005a) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics 112, 41–50.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mago R, Speilmeyer W, Lawrence GJ, Ellis JG, Pryor AJ (2004) Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome. Genome 47, 112–121.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mateos-Hernandez M, Singh RP, Hulbert SH, Bowden RL, Huerta-Espino J, Gill BS, Brown-Guedira G (2006) Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Functional and Integrative Genomics 23, 122–131. open url image1

McFadden HG, Lehmensiek A, Lagudah ES (2006) Resistance gene analogues of wheat: molecular genetic analysis of ESTs. Theoretical and Applied Genetics 113, 987–1002.
Crossref | PubMed |
open url image1

Rogowsky PM, Guidet FLY, Langridge P, Shepard KW, Koebner RMD (1991) Isolation and characterization of wheat–rye recombinants involving chromosome arm IDS of wheat. Theoretical and Applied Genetics 82, 537–544.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, Mcfadden H, Lagudah E (2006) Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theoretical and Applied Genetics 112, 500–508.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schnurbusch T, Bossolini E, Messmer M, Keller B (2004) Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology 94, 1036–1041.
Crossref |
open url image1

Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37, and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theoretical and Applied Genetics 102, 600–605.
Crossref | GoogleScholarGoogle Scholar | open url image1

Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82, 835–838. open url image1

Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88, 890–894.
Crossref |
open url image1

Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science 40, 1148–1155. open url image1

Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics 111, 731–735.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Science 43, 333–336. open url image1

William M, Singh RP, Huerta-Espino S, Ortiz I, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with Stripe rust resistance gene Yr29 in wheat. Phytopathology 93, 153–159.
Crossref |
open url image1