Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Analysis of a three-way interaction including multi-attributes

Mario Varela A , Jose Crossa B E , Jagdish Rane C , Arun Kumar Joshi B and Richard Trethowan D
+ Author Affiliations
- Author Affiliations

A Departamento de Matemática del Instituto Nacional de Ciencias Agrícolas, La Habana, Carretera Tapaste, Km 3½, San José de Las Lajas, Apdo Postal 32700, Habana, Cuba.

B Biometrics and Statistics Unit of the Crop Informatics Laboratory, International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico DF, Mexico.

C Directorate of Wheat Research, ICAR, Karnal 132 001, India.

D Plant Breeding Institute, The University of Sydney, PMB11, Camden, NSW 2570, Australia.

E Corresponding author. Email: j.crossa@cgiar.org

Australian Journal of Agricultural Research 57(11) 1185-1193 https://doi.org/10.1071/AR06081
Submitted: 13 March 2006  Accepted: 10 July 2006   Published: 27 October 2006

Abstract

The additive main effect and multiplicative interaction (AMMI) has been widely used for studying and interpreting genotype × environment interaction (GEI) in agricultural experiments using multi-environment trials (METs). When METs are performed across several years the interaction is referred to as a 3-mode (3-way) data array, in which the modes are genotypes, environments, and years. The 3-way array can be applied to other conditions or factors artificially created by the researcher, such as different sowing dates or plant densities, etc. Three-way interaction data can be studied using the AMMI analysis. The objective of this study is to apply the 3-mode AMMI to 2 datasets. Dataset 1 comprises genotype (25) × location (4) × sowing time (4) interaction; 8 traits were measured. The structure of dataset 2 is genotype (20) × irrigation regimes (4) × year (3) on grain yield. Results of the 3-way AMMI on dataset 1 show that several important 3-way interactions were not detected when condensing location (4) × sowing time (4) into environments (16). An alternative 3-way array, genotype × attribute × locations for the early sowing date in Year 1, is considered. Results of the 3-way AMMI on dataset 2 show that different patterns of response of genotypes can be found at different irrigation methods and years.

Additional keywords: Three-mode interaction; principal component analyses.


References


Basford KE, Kroonenberg PM, DeLacy IH, Lawrence PK (1990) Multi-attribute evaluation of regional cotton variety trials. Theoretical and Applied Genetics 79, 225–324.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crossa J, Basford K, Taba S, Delacy I, Silva E (1995) Three-mode analyses of maize using morphological and agronomic attributes measured in multilocation trials. Crop Science 35, 1483–1491. open url image1

Eberhart SA, Russell WA (1966) Stability parameters for comparing varieties. Crop Science 6, 36–40. open url image1

van Eeuwijk FA, Kroonenberg PM (1998) Multiplicative models for interaction in three-way ANOVA, with applications to plant-breeding. Biometrics 54, 1315–1333.
Crossref | GoogleScholarGoogle Scholar | open url image1

Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research 14, 742–754.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gabriel KR (1971) The biplot graphic display of matrices with applications to principal components analysis. Biometrika 58, 453–467.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gabriel KR (1978) Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society: Series B 40, 186–196. open url image1

Gauch HG (1988) Model selection and validation for yield trials with interaction. Biometrics 44, 705–715.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gollob HF (1968) A statistical model which combines features of factor analytic and analyses of variance techniques. Psychometrika 33, 73–115.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kroonenberg PM (1983) ‘Three-mode principal components analysis. Theory and applications.’ (DSWO-Press: Leiden, The Netherlands)

Kroonenberg PM, Basford KE (1989) An investigation of multi-attribute genotype response across environments using three-mode principal component analysis. Euphytica 44, 109–123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kroonenberg PM, De Leeuw J (1980) Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 69–97.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mandel J (1969) The partitioning of interaction in analysis of variance. Journal of Research of the National Bureau of Standards,Series B 73, 309–328. open url image1

Mandel J (1971) A new analysis of variance model for non-additive data. Technometrics 13, 1–18.
Crossref | GoogleScholarGoogle Scholar | open url image1

Timmerman ME, Kiers HAL (2000) Three-mode principal components analysis. Choosing the numbers of components and sensitivity to local optima. British Journal of Mathematical and Statistical Psychology 53, 1–16.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Varela M (2002) Los métodos Biplot como herramienta de Análisis de Interacción de orden superior en un Modelo Lineal/Bilineal. PhD thesis, Universidad de Salamanca. España.

Varela M, Torres V (2005) Aplicación del Análisis de Componentes Principales de Tres Modos en la caracterización multivariada de somaclones de King grass. Revista Cubana de Ciencia Agrícola 39, 12–19. open url image1

Williams EJ (1952) The interpretation of interactions in factorial experiments. Biometrika 39, 65–81.
Crossref | GoogleScholarGoogle Scholar | open url image1

Yates F, Cochran WG (1938) The analysis of group of experiments. Journal of Agricultural Science, Cambridge 28, 556–580. open url image1

Zobel RW, Wright MJ, Gauch HG (1988) Statistical analysis of a yield trial. Agronomy Journal 80, 388–393. open url image1