Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars

K. S. Aitken A D E , J.-C. Li A D , P. Jackson B D , G. Piperidis C D and C. L. McIntyre A D
+ Author Affiliations
- Author Affiliations

A CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia.

B CSIRO Plant Industry, Davies Laboratory, Private Mail Bag, Aitkenvale, Qld 4814, Australia.

C BSES Limited Central, PMB 57, Mackay, Qld 4741, Australia.

D Co-operative Research Centre for Sugar Industry Innovation through Biotechnology, Level 5, John Hines Building, University of Queensland, St Lucia, Qld 4072, Australia.

E Corresponding author. Email: karen.aitken@csiro.au

Australian Journal of Agricultural Research 57(11) 1167-1184 https://doi.org/10.1071/AR05391
Submitted: 9 November 2005  Accepted: 10 July 2006   Published: 27 October 2006

Abstract

Molecular diversity among 421 clones of cultivated sugarcane and wild relatives was analysed using AFLP markers. Of these clones, 270 were Saccharum officinarum and 151 were either cultivars produced by the Australian breeding program or important parents used in the breeding program. The S. officinarum clones were obtained from a collection that contained clones from all the major regions where S. officinarum is grown. Five AFLP primer combinations generated 657 markers of which 614 were polymorphic. All clones contained a large number of markers; a result of the polyploid nature and heterozygosity of the genome. S. officinarum clones from New Guinea displayed greater diversity than S. officinarum clones from other regions. This is in agreement with the hypothesis that New Guinea is the centre of origin of this species. The S. officinarum clones from Hawaii and Fiji formed a separate group and may correspond to clones that have been introgressed with other members of the ‘Saccharum complex’. Greater diversity was found in the cultivars than in the S. officinarum clones due to the introgression of S. spontaneum chromatin. These cultivars clustered as expected based on pedigree. The major contribution of clones QN66-2008 and Nco310 to Australian sugarcane cultivars divided the cultivars into 2 main groups. Although only a few S. officinarum clones are known to have been used in the breeding of current cultivars, about 90% of markers present in the S. officinarum clone collection (2n = 80) were also present in the cultivar collection. This suggests that most of the observed genetic diversity in S. officinarum has been captured in Australian sugarcane germplasm.

Additional keywords: molecular markers, hybrids, introgression.


References


Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics 110, 789–801.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Arceneaux G (1967) Cultivated sugarcanes of the world and their botanical derivation. Proceedings of the International Society for Sugar Cane Technology 12, 844–854. open url image1

Artschwager E , Brandes EW (1958) ‘Sugarcane (Saccharum officinarum), origin, characteristics and descriptions of representative clones’. USDA Agriculture Handbook no. 122. (USDA: Washington, DC)

Berding N , Roach BT (1987) Germplasm collection, maintenance and use. In ‘Sugarcane improvement through breeding’. (Ed. DJ Heinz) pp. 143–210. (Elsevier Press: Amsterdam)

Brandes EW (1958) Origin, classification and characteristics. In ‘Sugarcane (Saccharum officinarum L.)’. USDA Agriculture Handbook no. 122. (Eds E Artschwager, EW Brandes) pp. 1–35. (USDA: Washington, DC)

Bremer G (1961) Problems in breeding and cytology of sugar cane. Euphytica 10, 59–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Brummer EC, Cazcarro PM, Luth D (1999) Ploidy determination of alfalfa germplasm accessions using flow cytometry. Crop Science 39, 1202–1207. open url image1

Cuadrado A, Acevedo R, Moreno Díaz de la Espina S, Jouve N, de la Torre C (2004) Genome remodelling in three modern S. officinarum x S. spontaneum sugarcane cultivars. Journal of Experimental Botany 55, 847–854.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Daniels J, Daniels CA (1975) Geographical, historical and cultural aspects of the origin of the Indian and Chinese sugarcanes S. barberi and S. sinense.  Sugarcane Breed Newsletter 36, 4–23. open url image1

Daniels J , Roach BT (1987) Taxonomy and evolution. In ‘Sugarcane improvement through breeding’. (Ed. DJ Heinz) pp. 7–84. (Elsevier Press: Amsterdam)

Daniels J, Smith P, Paton N, Williams CA (1975) The origin of the genus Saccharum.  Sugarcane Breed Newsletter 36, 24–39. open url image1

D’Hont A, Grivet L, Feldmann P, Glaszmann J-C, Rao S, Berding N (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics 250, 405–413.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

D’Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugar Cane 1, 12–15. open url image1

Glaszmann JC, Lu YH, Lanaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. Journal of Genetics and Breeding 44, 191–198. open url image1

Glaszmann JC, Noyer JL, Fautret A, Feldmann P, Lanaud C (1989) Biochemical genetic markers in sugarcane. Theoretical and Applied Genetics 78, 537–543.
Crossref | GoogleScholarGoogle Scholar | open url image1

Grassl CO (1967) Introgression between Saccharum and Miscanthus in New Guinea and the Pacific area. Proceedings of the International Society for Sugar Cane Technology 12, 995–1003. open url image1

Grassl CO (1974) The origin of sugarcane. Sugarcane Breed Newsletter 34, 10–18. open url image1

Grassl CO (1977) The origin of the sugar-producing cultivars of Saccharum. Sugarcane Breed Newsletter 39, 8–33. open url image1

Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5, 122–127.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hoisington D (1992) ‘Laboratory protocols.’ (CIMMYT Applied Molecular Genetics Laboratory: Mexico, DF)

Jaccard P (1908) Nouvelles rescherches sur la distribution florale. Bulletin de la Sociéte Vaud des Sciences Naturelles 44, 223–270. open url image1

Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Research 92, 277–290.
Crossref |
open url image1

Jannoo N, Grivet L, Seguin M, Paulet F, Domaingue R, Rao PS, Dookun A, D’Hont A, Glaszmann JC (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theoretical and Applied Genetics 99, 171–184.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lombard L, Baril CP, Dubreuil P, Blouet F, Zhang D (2000) Genetic relationships and fingerprinting of rapeseed cultivars by AFLP: consequences for varietal registration. Crop Science 40, 1417–1425. open url image1

Lu YH, D’Hont A, Paulet F, Grivet L, Arnaud M, Glaszmann JV (1994b) Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78, 217–226.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lu YH, D’Hont A, Walker DIT, Rao PS (1994a) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78, 7–18.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mukherjee SK (1957) Origin and distribution of Saccharum.  Botanical Gazette 119, 55–61.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76, 5269–5273.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Price S (1960) Cytological studies in Saccharum and allied genera. VI. Chromosome numbers in S. officinarum and other noble sugarcane. Hawaii Plant Record 56, 183–194. open url image1

Price S, Daniels J (1968) Cytology of south Pacific sugarcane and related grasses; with special references to Fiji. Journal of Heredity 59, 141–145. open url image1

Roach B (1989) Origin and improvement of the genetic base of sugarcane. Proceedings of the Australian Society of Sugar Cane Technologists 10, 34–47. open url image1

Roach BT (1965) Sucrose of noble canes. Sugarcane Breed Newsletter 15, 2. open url image1

Roach BT (1972) Nobilisation of sugarcane. Proceedings of the International Society for Sugar Cane Technology 14, 206–216. open url image1

Rohlf FJ (1997) ‘NTSYS-PC: Numerical taxonomy and multivariate analysis system. Version 2.1. Applied Biostatistics.’ (Exeter Software: New York)

Sobral BWS, Braga DPV, LaHood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theoretical and Applied Genetics 87, 843–853.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sreenivasan TV , Ahloowalia BS , Heinz DJ (1987) Cytogenetics. In ‘Sugarcane improvement through breeding’. (Ed. DJ Heinz) pp. 211–253. (Elsevier Press: Amsterdam)

Vos P, Hogers R, Bleeker M, Reijams M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
PubMed |
open url image1