Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Accuracies of direct genomic breeding values for birth and weaning weights of registered Charolais cattle in Mexico

Francisco J. Jahuey-Martínez https://orcid.org/0000-0002-6562-5875 A B , Gaspar M. Parra-Bracamonte https://orcid.org/0000-0002-9327-2042 A F , Dorian J. Garrick https://orcid.org/0000-0001-8640-5372 C , Nicolás López-Villalobos https://orcid.org/0000-0001-6611-907X C , Juan C. Martínez-González https://orcid.org/0000-0003-1331-663X D , Ana M. Sifuentes-Rincón https://orcid.org/0000-0002-3867-9886 A and Luis A. López-Bustamante E
+ Author Affiliations
- Author Affiliations

A Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, 88710, México.

B Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, 31453, México.

C School of Agriculture and Environment, Massey University, Palmerston North, New Zealand.

D Universidad Autónoma de Tamaulipas-Facultad de Ingeniería y Ciencias, 87749, Victoria, Tamaulipas, México.

E Charolais Herd-Book of Mexico-RON B Charolais Ranch, Hermosillo, Sonora, México.

F Corresponding author. Email: gparra@ipn.mx

Animal Production Science 60(6) 772-779 https://doi.org/10.1071/AN18363
Submitted: 4 June 2018  Accepted: 25 October 2019   Published: 18 March 2020

Abstract

Context: Genomic prediction is now routinely used in many livestock species to rank individuals based on genomic breeding values (GEBV).

Aims: This study reports the first assessment aimed to evaluate the accuracy of direct GEBV for birth (BW) and weaning (WW) weights of registered Charolais cattle in Mexico.

Methods: The population assessed included 823 animals genotyped with an array of 77 000 single nucleotide polymorphisms. Genomic prediction used genomic best linear unbiased prediction (GBLUP), Bayes C (BC), and single-step Bayesian regression (SSBR) methods in comparison with a pedigree-based BLUP method.

Key results: Our results show that the genomic prediction methods provided low and similar accuracies to BLUP. The prediction accuracy of GBLUP and BC were identical at 0.31 for BW and 0.29 for WW, similar to BLUP. Prediction accuracies of SSBR for BW and WW were up to 4% higher than those by BLUP.

Conclusions: Genomic prediction is feasible under current conditions, and provides a slight improvement using SSBR.

Implications: Some limitations on reference population size and structure were identified and need to be addressed to obtain more accurate predictions in liveweight traits under the prevalent cattle breeding conditions of Mexico.

Additional keywords: beef cattle, birthweight, GEBV, genomic prediction, weaning weight.


References

Barbato M, Orozco-terWengel P, Tapio M, Bruford MW (2015) SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Frontiers in Genetics 6, 109
SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data.Crossref | GoogleScholarGoogle Scholar | 25852748PubMed |

Charolais-Charbray Herdbook de México (2017) Sumario de sementales Charolais y Charbray 2017. Available at http://charolais.org.mx/ [Verified 15 August 2017]

Cheng H, Garrick DJ, Fernando RL (2016) JWAS: Julia implementation of whole-genome analyses software using univariate and multivariate Bayesian mixed effects model. Available at http://qtl.rocks [Verified 5 February 2018]

Daetwyler HD (2009) Genome-wide evaluation of populations. PhD thesis, Wageningen University, Wageningen, The Netherlands.

Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and bench marking. Genetics 193, 347–365.
Genomic prediction in animals and plants: simulation of data, validation, reporting, and bench marking.Crossref | GoogleScholarGoogle Scholar | 23222650PubMed |

FAO (2007) ‘The state of the world’s animal genetic resources for food and agriculture.’ (Eds B Rischkowsky, D Pilling) (FAO: Rome)

Ferdosi MH, Kinghorn BP, van der Werf JH, Lee SH, Gondro C (2014) hsphase: An R package for pedigree reconstruction, detection of recombination events, phasing and imputation of half-sib family groups. BMC Bioinformatics 15, 172
hsphase: An R package for pedigree reconstruction, detection of recombination events, phasing and imputation of half-sib family groups.Crossref | GoogleScholarGoogle Scholar | 24906803PubMed |

Garrick DJ, Fernando R (2014) Genomic prediction and genome-wide association studies in beef and dairy cattle. In ‘The genetics of cattle’. (Ed. D Garrick) pp. 474–501. (CABI: Wallingford, UK)

Gunia M, Saintilan R, Venot E, Hozé C, Fouilloux MN, Phocas F (2014) Genomic prediction in French Charolais beef cattle using high-density single nucleotide polymorphism markers. Journal of Animal Science 92, 3258–3269.
Genomic prediction in French Charolais beef cattle using high-density single nucleotide polymorphism markers.Crossref | GoogleScholarGoogle Scholar | 24948648PubMed |

Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12, 186
Extension of the Bayesian alphabet for genomic selection.Crossref | GoogleScholarGoogle Scholar | 21605355PubMed |

Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genetical Research 91, 47–60.
Increased accuracy of artificial selection by using the realized relationship matrix.Crossref | GoogleScholarGoogle Scholar |

Huang Y, Hickey JM, Cleveland MA, Maltecca C (2012) Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost. Genetics, Selection, Evolution. 44, 25
Assessment of alternative genotyping strategies to maximize imputation accuracy at minimal cost.Crossref | GoogleScholarGoogle Scholar | 22849718PubMed |

Jahuey-Martínez FJ, Parra-Bracamonte GM, Sifuentes-Rincón AM, Martínez-González JC, Gondro C, García-Pérez CA, López-Bustamante LA (2016) Genomewide association analysis of growth traits in Charolais beef cattle. Journal of Animal Science 94, 4570–4582.
Genomewide association analysis of growth traits in Charolais beef cattle.Crossref | GoogleScholarGoogle Scholar | 27898967PubMed |

Kizilkaya K, Fernando RL, Garrick DJ (2010) Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. Journal of Animal Science 88, 544–551.
Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes.Crossref | GoogleScholarGoogle Scholar | 19820059PubMed |

Lee J, Cheng H, Garrick D, Golden B, Dekkers J, Park K, Lee D, Fernando R (2017a) Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics, Selection, Evolution. 49, 2
Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.Crossref | GoogleScholarGoogle Scholar | 28093065PubMed |

Lee J, Kachman SD, Spangler ML (2017b) The impact of training strategies on the accuracy of genomic predictors in United States Red Angus cattle. Journal of Animal Science 95, 3406–3414.

Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. Journal of Dairy Science 92, 4656–4663.
A relationship matrix including full pedigree and genomic information.Crossref | GoogleScholarGoogle Scholar | 19700729PubMed |

Lopes FB, Wu XL, Li H, Xu J, Perkins T, Genho J, Ferretti R, Tait RG, Bauck S, Rosa GJM (2018) Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low‐density SNP genotypes. Journal of Animal Breeding and Genetics 135, 14–27.
Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low‐density SNP genotypes.Crossref | GoogleScholarGoogle Scholar | 29345073PubMed |

Lourenco DAL, Misztal I, Wang H, Aguilar I, Tsuruta S, Bertrand JK (2013) Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models. Journal of Animal Science 91, 4090–4098.
Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models.Crossref | GoogleScholarGoogle Scholar |

Lu D, Sargolzaei M, Kelly M, Li C, Vander Voort G, Wang Z, Plastow G, Moore S, Miller SP (2012) Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Frontiers in Genetics 3, 152
Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle.Crossref | GoogleScholarGoogle Scholar | 22912646PubMed |

Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences 1, 221–237.
Accelerating improvement of livestock with genomic selection.Crossref | GoogleScholarGoogle Scholar | 25387018PubMed |

Meuwissen T, Hayes B, Goddard M (2016) Genomic selection: a paradigm shift in animal breeding. Animal Frontiers 6, 6–14.
Genomic selection: a paradigm shift in animal breeding.Crossref | GoogleScholarGoogle Scholar |

Morrissey MB, Wilson AJ (2010) pedantics: an r package for pedigree‐based genetic simulation and pedigree manipulation, characterisation and viewing. Molecular Ecology Resources 10, 711–719.

Mrode R, Ojango JM, Okeyo AM, Mwacharo JM (2019) Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects. Frontiers in Genetics 9, 694.

Muñoz F, Sanchez L (2019) breedR: Statistical methods for forest genetic resources analysts. R package ver. 0.12-4. Available at https://github.com/famuvie/breedR [Verified 25 March 2018]

Parra-Bracamonte GM, Lopez-Villalobos N, Morris ST, Sifuentes-Rincón AM, Lopez-Bustamante LA (2016) Genetic trends for live weight traits reflect breeding strategies in registered Charolais farms in Mexico. Tropical Animal Health and Production 48, 1729–1738.
Genetic trends for live weight traits reflect breeding strategies in registered Charolais farms in Mexico.Crossref | GoogleScholarGoogle Scholar | 27696327PubMed |

Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198, 483–495.
Genome-wide regression and prediction with the BGLR statistical package.Crossref | GoogleScholarGoogle Scholar | 25009151PubMed |

Pimentel EC, Wensch-Dorendorf M, König S, Swalve HH (2013) Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genetics, Selection, Evolution. 45, 12
Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture.Crossref | GoogleScholarGoogle Scholar | 23621897PubMed |

Saatchi M, McClure MC, McKay SD, Rolf MM, Kim J, Decker JE, Taxis TM, Chapple RH, Ramey HR, Northcutt SL, Bauck S, Woodward B, Dekkers JCM, Fernando RL, Schnabel RD, Garrick DJ, Taylor JF (2011) Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics, Selection, Evolution. 43, 40
Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation.Crossref | GoogleScholarGoogle Scholar | 22122853PubMed |

Saatchi M, Schnabel RD, Rolf MM, Taylor JF, Garrick DJ (2012) Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle. Genetics, Selection, Evolution. 44, 38
Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle.Crossref | GoogleScholarGoogle Scholar | 23216608PubMed |

Saatchi M, Ward J, Garrick DJ (2013) Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations. Journal of Animal Science 91, 1538–1551.
Accuracies of direct genomic breeding values in Hereford beef cattle using national or international training populations.Crossref | GoogleScholarGoogle Scholar | 23345550PubMed |

VanRaden PM (2008) Efficient methods to compute genomic predictions. Journal of Dairy Science 91, 4414–4423.
Efficient methods to compute genomic predictions.Crossref | GoogleScholarGoogle Scholar | 18946147PubMed |

Zhu M, Zhu B, Wang YH, Wu Y, Xu L, Guo LP, Yuan ZR, Zhang LP, Gao X, Gao HJ, Xu SZ, Li JY (2013) Linkage disequilibrium estimation of Chinese beef Simmental cattle using high-density SNP panels. Asian-Australasian Journal of Animal Sciences 26, 772–779.
Linkage disequilibrium estimation of Chinese beef Simmental cattle using high-density SNP panels.Crossref | GoogleScholarGoogle Scholar | 25049849PubMed |