Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Evolution of blood serum mineral composition during antler growth and rut as consequence of Cu supplementation in captive red deer and its effects in mature antler composition

M. P. Serrano A B C D , J. Cappelli A B C , A. García A B C , L. Gallego A B C and T. Landete-Castillejos A B C
+ Author Affiliations
- Author Affiliations

A Animal Science Techniques Applied to Wildlife Management Research Group, Instituto de Investigación en Recursos Cinegéticos, Universidad de Castilla-La Mancha, Campus Universitario sn 02071, Albacete, Spain.

B Sección de Recursos Cinegéticos y Ganaderos, Instituto de Desarrollo Regional, Universidad de Castilla-La Mancha, Campus Universitario sn 02071, Albacete, Spain.

C Departamento de Ciencia y Tecnología Agroforestal y Genética, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario sn 02071, Albacete, Spain.

D Corresponding author. Email: Martina.Perez@uclm.es

Animal Production Science 59(10) 1886-1897 https://doi.org/10.1071/AN18253
Submitted: 17 April 2018  Accepted: 14 April 2019   Published: 27 August 2019

Abstract

In the present study we assessed the effects of Cu supplementation and antler growth stage on mineral composition of serum and hard antler in red deer fed a balanced diet. Correlations between minerals were analysed for serum, for antlers, and between serum versus mature antler. Blood samples were drawn at Days –36, 54, 132 and 197 of the start of antler growth (SAG). Hard antlers were cut at Day 165 from SAG. The Cu supplemented group (n = 9) was injected with 0.83 mg Cu/kg of bodyweight, whereas the control group (n = 9) was injected with a physiological saline solution, both every 42 days between Days –36 (Cu supplied after blood sampling) and 132 from SAG. Supplementation with Cu increased (P < 0.05) the contents of P and Cu in serum but did not affect the antler mineral profile. Serum contents of Mg, Na, S, B and Cu increased during the antler growth, whereas contents of K, Al and Fe decreased in the same period (P < 0.001). At Day 54 from SAG in Cu group, serum P content correlated negatively with antler Ca content whereas Zn of serum and antler correlated positively (P < 0.05). The maximum number of correlations between the mineral profile of serum and hard antler was achieved at Day 132 from SAG (3.3, 4.7 and 12.9% for Days –36, 54 and 132, respectively). In conclusion, the analysis of specific minerals in serum could be used to detect in advance some mineral deficiencies in the antler.

Additional keywords: antler, copper, deer, minerals.


References

Baxter BJ, Andrews RN, Barrell GK (1999) Bone turnover associated with antler growth in red deer (Cervus elaphus). The Anatomical Record 256, 14–19.
Bone turnover associated with antler growth in red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 10456981PubMed |

Boletín Oficial del Estado (2013) Real Decreto 53/2013, de 1 de febrero, por el que se establecen las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. Boletín Oficial del Estado 34, 11370–11421.

Cappelli J, García A, Ceacero F, Gómez S, Luna S, Gallego L, Gambín P, Landete-Castillejos T (2015) Manganese supplementation in deer under balanced diet increases impact energy and contents in minerals of antler bone tissue. PLoS One 10, e0132738
Manganese supplementation in deer under balanced diet increases impact energy and contents in minerals of antler bone tissue.Crossref | GoogleScholarGoogle Scholar | 26177083PubMed |

Currey JD, Landete-Castillejos T, Estévez JA, Ceacero F, Olguín A, García A, Gallego L (2009) The mechanical properties of red deer antler bone when used in fighting. Journal of Experimental Biology 212, 3985–3993.
The mechanical properties of red deer antler bone when used in fighting.Crossref | GoogleScholarGoogle Scholar | 19946076PubMed |

Davin R, Almeida FN, Zhao J, Escobar J, Vázquez-Añon M (2016) Effects of copper source and level on growth performance and bone mineralization in pigs fed phytase-supplemented diets. Journal of Animal Science 94, 74–75.
Effects of copper source and level on growth performance and bone mineralization in pigs fed phytase-supplemented diets.Crossref | GoogleScholarGoogle Scholar |

Favus MJ, Bushinsky DA, Lemann J, Jr (2006) Regulation of calcium, magnesium, and phosphate metabolism. In ‘Primer on the metabolic bone diseases and disorders of mineral metabolism’. (Ed. MJ Favus) pp. 76–79. (American Society for Bone and Mineral Research: Washington, DC)

Gambín P, Serrano MP, Gallego L, García A, Cappelli J, Ceacero F, Landete Castillejos T (2017) Does Cu supplementation affect the mechanical and structural properties and mineral content of antler bone tissue on red deer? Animal 11, 1312–1320.
Does Cu supplementation affect the mechanical and structural properties and mineral content of antler bone tissue on red deer?Crossref | GoogleScholarGoogle Scholar | 28069103PubMed |

Gaspar‐López E, Landete‐Castillejos T, Estévez JA, Ceacero F, Gallego L, García AJ (2010) Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals 45, 243–249.
Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus).Crossref | GoogleScholarGoogle Scholar | 18992114PubMed |

Gómez S, García AJ, Luna S, Kierdorf U, Kierdorf H, Gallego L, Landete-Castillejos T (2013) Labelling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 52, 506–515.
Labelling studies on cortical bone formation in the antlers of red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 23000508PubMed |

Grace ND, Wilson PR (2002) Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. New Zealand Veterinary Journal 50, 252–259.
Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer.Crossref | GoogleScholarGoogle Scholar | 16032281PubMed |

Handeland K, Bernhoft A, Aartun MS (2008) Copper deficiency and effects of copper supplementation in a herd of red deer (Cervus elaphus). Acta Veterinaria Scandinavica 50, 8
Copper deficiency and effects of copper supplementation in a herd of red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 18447913PubMed |

Hyun TH, Barrett-Connor E, Milne DB (2004) Zinc intakes and plasma concentration in men with osteoporosis: the rancho Bernardo study. American Journal of Clinical Nutrition 80, 715–721.
Zinc intakes and plasma concentration in men with osteoporosis: the rancho Bernardo study.Crossref | GoogleScholarGoogle Scholar | 15321813PubMed |

Jeon BT, Kim MH, Lee SM, Thomas DG, Moon SH (2006) Changes of chemical composition in blood serum during the antler growth period in spotted deer (Cervus nippon). Asian-Australasian Journal of Animal Sciences 19, 1298–1304.
Changes of chemical composition in blood serum during the antler growth period in spotted deer (Cervus nippon).Crossref | GoogleScholarGoogle Scholar |

Jeon BT, Kang SK, Lee SM, Hong SK, Moon SH (2007) Serum biochemical values during antler growth in sika deer (Cervus nippon). Asian-Australasian Journal of Animal Sciences 20, 748–753.
Serum biochemical values during antler growth in sika deer (Cervus nippon).Crossref | GoogleScholarGoogle Scholar |

Jeon BT, Cheong SH, Kim DH, Park JH, Park PJ, Sung SH, Thomas DG, Kim KH, Moon SH (2011) Effect of antler development stage on the chemical composition of velvet antler in elk (Cervus elaphus canadensis). Asian-Australasian Journal of Animal Sciences 24, 1303–1313.
Effect of antler development stage on the chemical composition of velvet antler in elk (Cervus elaphus canadensis).Crossref | GoogleScholarGoogle Scholar |

Johnson HE, Bleich VC, Krausman PR (2007) Mineral deficiencies in tule elk, Owens Valley, California. Journal of Wildlife Diseases 43, 61–74.
Mineral deficiencies in tule elk, Owens Valley, California.Crossref | GoogleScholarGoogle Scholar | 17347394PubMed |

Koziorowska-Gilun M, Fraser L, Gilun P, Koziorowski M, Kordan W (2015) Activity of antioxidant enzymes and their mRNA expression in different reproductive tract tissues of the male roe deer (Capreolus capreolus) during the pre-rut and rut seasons. Small Ruminant Research 129, 97–103.
Activity of antioxidant enzymes and their mRNA expression in different reproductive tract tissues of the male roe deer (Capreolus capreolus) during the pre-rut and rut seasons.Crossref | GoogleScholarGoogle Scholar |

Kuba J (2014) Analysis of changes in the concentration of Ca, P and Mg in blood serum of red deer (Cervus elaphus) immature males in farm breeding. Acta Scientiarum Polonorum Seria Zootechnica 13, 31–40.

Kuba J, Błaszczyk B, Stankiewicz T, Skuratko A, Udała J (2015) Analysis of annual changes in the concentrations of selected macro- and microelements, thyroxine, and testosterone in the serum of red deer (Cervus elaphus) stags. Biological Trace Element Research 168, 356–361.
Analysis of annual changes in the concentrations of selected macro- and microelements, thyroxine, and testosterone in the serum of red deer (Cervus elaphus) stags.Crossref | GoogleScholarGoogle Scholar | 25998797PubMed |

Kučer N, Kuleš J, Rafaj RB, Tončić J, Vicković I, Štoković I, Potočnjak D, Šoštarić B (2013) Mineral concentrations in plasma of young and adult red deer. Veterinarski Arhiv 83, 425–434.

L’abbé MR, Cockell KA, Lee NS (2003) Micronutrient supplementation: when is best and why? Proceedings of the Nutrition Society 62, 413–420.
Micronutrient supplementation: when is best and why?Crossref | GoogleScholarGoogle Scholar | 14506889PubMed |

Landete-Castillejos T, Estévez AJ, Martínez A, Ceacero F, García A, Gallego L (2007) Does chemical composition of antler bone reflect the physiological effort made to grow it? Bone 40, 1095–1102.
Does chemical composition of antler bone reflect the physiological effort made to grow it?Crossref | GoogleScholarGoogle Scholar | 17239669PubMed |

Landete-Castillejos T, Currey JD, Estévez JA, Fierro Y, Calatayud A, Ceacero F, García AJ, Gallego L (2010) Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47, 815–825.
Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers?Crossref | GoogleScholarGoogle Scholar | 20673821PubMed |

Landete-Castillejos T, Currey JD, Ceacero F, García AJ, Gallego L, Gómez S (2012) Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 50, 245–254.
Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.Crossref | GoogleScholarGoogle Scholar | 22071000PubMed |

Laven RA, Wilson PR (2011) Possible subclinical hepatopathy after copper supplementation in farmed red deer. New Zealand Veterinary Journal 59, 197–200.
Possible subclinical hepatopathy after copper supplementation in farmed red deer.Crossref | GoogleScholarGoogle Scholar | 21660850PubMed |

National Research Council (2007) Nutrient requirements of cervids table. In ‘Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids’. pp. 300–307. (National Academy Press: Washington DC)

Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Developmental Dynamics 205, 332–347.
Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry.Crossref | GoogleScholarGoogle Scholar | 8850568PubMed |

Roug A, Swift PK, Gerstenberg G, Woods LW, Kreuder-Johnson C, Torres SG, Puschner B (2015) Comparison of trace mineral concentrations in tail hair, body hair, blood, and liver of mule deer (Odocoileus hemionus) in California. Journal of Veterinary Diagnostic Investigation 27, 295–305.
Comparison of trace mineral concentrations in tail hair, body hair, blood, and liver of mule deer (Odocoileus hemionus) in California.Crossref | GoogleScholarGoogle Scholar | 25862714PubMed |

Stéger V, Molnár A, Borsy A, Gyurján I, Szabolcsi Z, Dancs G, Molnár J, Papp P, Nagy J, Puskás L, Barta E, Zomborszky Z, Horn P, Podani J, Semsey S, Lakatos P, Orosz L (2010) Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes. Molecular Genetics and Genomics 284, 273–287.
Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus: expression dynamics for regulatory and effector genes.Crossref | GoogleScholarGoogle Scholar | 20697743PubMed |

Suttle NF (2010) Copper. In ‘Mineral nutrition of livestock’. 4th edn. (Ed. EJ Underwood) pp. 255–305. (CABI Publishing: Wallingford, UK)

Walker IH, Wilson PR, Beckett SD (2002) Copper supplementation, velvet antler production and growth of rising 2-year-old red deer stags. New Zealand Veterinary Journal 50, 177–181.
Copper supplementation, velvet antler production and growth of rising 2-year-old red deer stags.Crossref | GoogleScholarGoogle Scholar | 16032267PubMed |

Wilson PR, Grace ND (2001) A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus). New Zealand Veterinary Journal 49, 126–132.
A review of tissue reference values used to assess the trace element status of farmed red deer (Cervus elaphus).Crossref | GoogleScholarGoogle Scholar | 16032179PubMed |