Register      Login
Australian Mammalogy Australian Mammalogy Society
Journal of the Australian Mammal Society
RESEARCH ARTICLE

Asymmetric gait in locomotion of Hypsiprymnodon moschatus, the most primitive extant macropodoid marsupial

Peter J. Bishop https://orcid.org/0000-0003-2702-0557 A B # * , Amy C. Tschirn C # , Aaron B. Camens C and Gavin J. Prideaux C
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.

B Geosciences Program, Queensland Museum, Brisbane, Qld, Australia.

C College of Science and Engineering, Flinders University, Adelaide, SA, Australia.

* Correspondence to: pbishop@fas.harvard.edu

# These authors contributed equally to this work.

Handling Editor: Christine Cooper

Australian Mammalogy 47, AM24050 https://doi.org/10.1071/AM24050
Submitted: 29 November 2024  Accepted: 20 February 2025  Published: 20 March 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Australian Mammal Society.

Abstract

The evolutionary history of kangaroos and their relatives cannot be understood without considering the origins of their diverse locomotor behaviours, especially hopping. As the most primitive extant macropodoid, the musky rat-kangaroo, Hypsiprymnodon moschatus, can offer insight into evolution within the group, including the origin of bipedal hopping locomotion. Adult H. moschatus individuals were filmed in the wild to study their locomotor behaviour. Quantitative analysis of temporal footfall patterns showed that H. moschatus uses exclusively asymmetric gaits across slow and fast speeds of locomotion, predominantly employing a bounding gait. In addition, observations confirmed that it is restricted to quadrupedal gaits even at very fast speeds; there remains no evidence of hopping in this species. These results support the hypothesis that a shift to an asymmetric-gait-dominant locomotor repertoire was a functional prerequisite in the evolution of bipedal hopping in macropodoids.

Keywords: asymmetric gait, biomechanics, bounding, evolution, hopping, Hypsiprymnodon, locomotion, macropodoid, marsupial.

References

Baudinette, R. V. (1977). Locomotory energetics in a marsupial, Setonix brachyurus. Australian Journal of Zoology 25, 423-428.
| Crossref | Google Scholar |

Baudinette, R. V. (1994). Locomotion in macropodoid marsupials: gaits, energetics and heat balance. Australian Journal of Zoology 42, 103-123.
| Crossref | Google Scholar |

Baudinette, R. V., Snyder, G. K., and Frappell, P. B. (1992). Energetic cost of locomotion in the tammar wallaby. American Journal of Physiology 262, 771-778.
| Crossref | Google Scholar | PubMed |

Baudinette, R. V., Halpern, E. A., and Hinds, D. S. (1993). Energetic cost of locomotion as a function of ambient temperature and during growth in the marsupial Potorous tridactylus. Journal of Experimental Biology 174, 81-95.
| Crossref | Google Scholar | PubMed |

Beck, R. M. D., Voss, R. S., and Jansa, S. A. (2022). Craniodental morphology and phylogeny of marsupials. Bulletin of the American Museum of Natural History 457, 1-350.
| Crossref | Google Scholar |

Bennett, M. B. (2000). Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in? Physiological and Biochemical Zoology 73, 726-735.
| Crossref | Google Scholar | PubMed |

Bennett, M. B., and Garden, J. G. (2004). Locomotion and gaits of the northern brown bandicoot, Isoodon macrourus (Marsupialia: Peramelidae). Journal of Mammalogy 85, 296-301.
| Crossref | Google Scholar |

Biknevicius, A. R., Reilly, S. M., McElroy, E. J., and Bennett, M. B. (2013). Symmetrical gaits and center of mass mechanics in small-bodied, primitive mammals. Zoology 116, 67-74.
| Crossref | Google Scholar | PubMed |

Bishop, P. J., Bates, B. T., Allen, V. R., Henderson, D. M., Randau, M., and Hutchinson, J. R. (2020). Relationships of mass properties and body proportions to locomotor habit in terrestrial Archosauria. Paleobiology 46, 550-569.
| Crossref | Google Scholar |

Bishop, P. J., Wright, M. A., and Pierce, S. E. (2021). Whole-limb scaling of muscle mass and force-generating capacity in amniotes. PeerJ 9, e12574.
| Crossref | Google Scholar | PubMed |

Blomberg, S. P., Garland, T., Jr, and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717-745.
| Crossref | Google Scholar | PubMed |

Buchmann, L. K., and Guiler, E. R. (1974). Locomotion in the potoroo. Journal of Mammalogy 55, 203-206.
| Crossref | Google Scholar | PubMed |

Burk, A., Westerman, M., and Springer, M. (1998). The phylogenetic position of the musky rat-kangaroo and the evolution of bipedal hopping in kangaroos (Macropodidae: Diprotodontia). Systematic Biology 47, 457-474.
| Crossref | Google Scholar | PubMed |

Campione, N. E., and Evans, D. C. (2012). A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10, 60.
| Crossref | Google Scholar | PubMed |

Carrano, M. T. (1998). The evolution of dinosaur locomotion: functional morphology, biomechanics, and modern analogs. PhD thesis, University of Chicago, IL, USA.

Cartmill, M., Lemelin, P., and Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoological Journal of the Linnean Society 136, 401-420.
| Crossref | Google Scholar |

Cascini, M., Mitchell, K. J., Cooper, A., and Phillips, M. J. (2019). Reconstructing the evolution of giant extinct kangaroos: comparing the utility of DNA, morphology, and total evidence. Systematic Biology 68, 520-537.
| Crossref | Google Scholar | PubMed |

Cuff, A. R., Daley, M. A., Michel, K. B., Allen, V. R., Lamas, L. P., Adami, C., Monticelli, P., Pelligand, L., and Hutchinson, J. R. (2019). Relating neuromuscular control to functional anatomy of limb muscles in extant archosaurs. Journal of Morphology 280, 666-680.
| Crossref | Google Scholar | PubMed |

Dagg, A. I. (1973). Gaits in mammals. Mammal Review 3, 135-154.
| Crossref | Google Scholar |

Dawson, T. J., and Taylor, C. R. (1973). Energetic cost of locomotion in kangaroos. Nature 246, 313-314.
| Crossref | Google Scholar |

Dawson, R. S., Warburton, N. M., Richards, H. L., and Milne, N. (2015). Walking on five legs: investigating tail use during slow gait in kangaroos and wallabies. Australian Journal of Zoology 63, 192-200.
| Crossref | Google Scholar |

Dennis, A. J. (1997). Musky rat-kangaroos, Hypsiprymnodon moschatus: cursorial frugivores in Australia’s wet-tropical rain forests. PhD thesis, James Cook University of North Queensland, Townsville, Qld, Australia.

Duchêne, D. A., Bragg, J. G., Duchêne, S., Neaves, L. E., Potter, S., Moritz, C., Johnson, R. N., Ho, S. Y. W., and Eldridge, M. M. D. B. (2018). Analysis of phylogenomic tree space resolves relationships among marsupial families. Systematic Biology 67, 400-412.
| Crossref | Google Scholar | PubMed |

Dunham, N. T., McNamara, A., Shapiro, L., Hieronymus, T., and Young, J. W. (2018). A user’s guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free-ranging primates. American Journal of Physical Anthropology 167, 569-584.
| Crossref | Google Scholar | PubMed |

Gaschk, J. L., Frère, C. H., and Clemente, C. J. (2019). Quantifying koala locomotion strategies: implications for the evolution of arborealism in marsupials. Journal of Experimental Biology 222, jeb207506.
| Crossref | Google Scholar | PubMed |

Goldfinch, A. J., and Molnar, R. E. (1978). Gait of the brush-tailed possum (Trichosurus vulpecula). The Australian Zoologist 19, 277-289.
| Google Scholar |

Hedges, S. B., Dudley, J., and Kumar, S. (2006). TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971-2972.
| Crossref | Google Scholar | PubMed |

Hildebrand, M. (1977). Analysis of asymmetrical gaits. Journal of Mammalogy 58, 131-156.
| Crossref | Google Scholar |

Johnson, P. M., and Strahan, R. (1982). A further description of the musky rat-kangaroo, Hypsiprymnodon moschatus Ramsay 1876 (Marsupialia, Potoroidae), with notes on its biology. Australian Zoologist 21, 27-46.
| Crossref | Google Scholar |

Jones, M. E., Travouillon, K. J., and Janis, C. M. (2024). Proportional variation and scaling in the hindlimbs of hopping mammals, including convergent evolution in argyrolagids and jerboas. Journal of Mammalian Evolution 31, 8.
| Crossref | Google Scholar |

McGowan, C. P., and Collins, C. E. (2018). Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping. Journal of Experimental Biology 221, jeb161661.
| Crossref | Google Scholar | PubMed |

O’Connor, S. M., Dawson, T. J., Kram, R., and Donelan, J. M. (2014). The kangaroo’s tail propels and powers pentapedal locomotion. Biology Letters 10, 20140381.
| Crossref | Google Scholar | PubMed |

Parchman, A. J., Reilly, S. M., and Biknevicius, A. R. (2003). Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal. Journal of Experimental Biology 206, 1379-1388.
| Crossref | Google Scholar | PubMed |

Prideaux, G. J., and Warburton, N. M. (2010). An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies. Zoological Journal of the Linnean Society 159, 954-987.
| Crossref | Google Scholar |

Pridmore, P. A. (1994). Locomotion in Dromiciops australis. Australian Journal of Zoology 42, 679-699.
| Crossref | Google Scholar |

R Core Team (2021). ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria)

Reilly, S. M., McElroy, E. J., and White, T. D. (2009). Abdominal muscle function in ventilation and locomotion in new world opossums and basal eutherians: breathing and running with and without epipubic bones. Journal of Morphology 270, 1014-1028.
| Crossref | Google Scholar | PubMed |

Smaers, J. B., and Rohlf, F. J. (2016). Testing species’ deviation from allometric predictions using the phylogenetic regression. Evolution 70, 1145-1149.
| Crossref | Google Scholar | PubMed |

Szalay, F. S. (1994). ‘Evolutionary History of the Marsupials and an Analysis of Osteological Characters.’ (Cambridge University Press: New York, NY, USA)

Webster, K. N., and Dawson, T. J. (2003). Locomotion energetics and gait characteristics of a rat-kangaroo, Bettongia penicillata, have some kangaroo-like features. Journal of Comparative Physiology B 173, 549-557.
| Crossref | Google Scholar | PubMed |

Westerman, M., Loke, S., Tan, M. H., and Kear, B. P. (2022). Mitogenome of the extinct desert ‘rat-kangaroo’ times the adaptation to aridity in macropodoids. Scientific Reports 12, 5829.
| Crossref | Google Scholar | PubMed |

Westerveld, L. (2024). Gait use within small macropodoids. Honours thesis, Flinders University, Adelaide, SA, Australia.

White, T. D. (1990). Gait selection in the brush-tail possum (Trichosurus vulpecula), the northern quoll (Dasyurus hallucatus), and the Virginia opossum (Didelphis virginiana). Journal of Mammalogy 71, 79-84.
| Crossref | Google Scholar |

Windsor, D. E., and Dagg, A. I. (1971). The gaits of Macropodinae (Marsupialia). Journal of Zoology 163, 165-175.
| Crossref | Google Scholar |