Drone surveys cause less disturbance than ground-based surveys in endangered spectacled flying-foxes (Pteropus conspicillatus)
Emmeline Bernadette Barrett Norris
A
Abstract
Robust population estimates are critical for detecting biodiversity declines. Thermal drones offer a promising alternative to invasive, imprecise ground-based techniques for monitoring endangered spectacled flying-foxes (Pteropus conspicillatus). This study evaluated spectacled flying-fox behavioural responses to drones to address concerns that they will disturb roosting colonies. At two studied roosts, drones elicited minimal disturbance, whereas ground-based surveys triggered alarm and escape responses, particularly among unhabituated flying-foxes. These findings highlight thermal drones as a non-invasive tool for monitoring spectacled flying-foxes. Further research is needed to evaluate their accuracy and precision compared with ground counts.
Keywords: animal behaviour, Chiroptera, conservation, Old World fruit bats, Pteropodidae, RPAS, thermal infrared, UAV, wildlife monitoring.
References
Arona, L., Dale, J., Heaslip, S. G., Hammill, M. O., and Johnston, D. W. (2018). Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (Halichoerus grypus) at breeding colonies in Nova Scotia, Canada. PeerJ 6, e4467.
| Crossref | Google Scholar | PubMed |
Attard, M. R. G., Phillips, R. A., Bowler, E., Clarke, P. J., Cubaynes, H., Johnston, D. W., and Fretwell, P. T. (2024). Review of satellite remote sensing and unoccupied aircraft systems for counting wildlife on land. Remote Sensing 16(4), 627.
| Crossref | Google Scholar |
Aubin, J. A., Mikus, M.-A., Michaud, R., Mennill, D., and Vergara, V. (2023). Fly with care: Belugas show evasive responses to low altitude drone flights. Marine Mammal Science 39(3), 718-739.
| Crossref | Google Scholar |
Borrelle, S. B., and Fletcher, A. T. (2017). Will drones reduce investigator disturbance to surface-nesting seabirds? Marine Ornithology 45, 89-94.
| Google Scholar |
Burke, C., Rashman, M., Wich, S., Symons, A., Theron, C., and Longmore, S. (2019). Optimizing observing strategies for monitoring animals using drone-mounted thermal infrared cameras. International Journal of Remote Sensing 40(2), 439-467.
| Crossref | Google Scholar |
Carey, M. J. (2009). The effects of investigator disturbance on procellariiform seabirds: a review. New Zealand Journal of Zoology 36(3), 367-377.
| Crossref | Google Scholar |
Demmer, C. R., Demmer, S., and McIntyre, T. (2024). Drones as a tool to study and monitor endangered Grey Crowned Cranes (Balearica regulorum): behavioural responses and recommended guidelines. Ecology and Evolution 14(2), e10990.
| Crossref | Google Scholar |
Fujita, M. S., and Tuttle, M. D. (1991). Flying foxes (Chiroptera: Pteropodidae): threatened animals of key ecological and economic importance. Conservation Biology 5(4), 455-463.
| Crossref | Google Scholar |
Geldart, E. A., Barnas, A. F., Semeniuk, C. A. D., Gilchrist, H. G., Harris, C. M., and Love, O. P. (2022). A colonial-nesting seabird shows no heart-rate response to drone-based population surveys. Scientific Reports 12(1), 18804.
| Crossref | Google Scholar |
Giles, A. B., Butcher, P. A., Colefax, A. P., Pagendam, D. E., Mayjor, M., and Kelaher, B. P. (2021). Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquatic Conservation: Marine and Freshwater Ecosystems 31(3), 677-684.
| Crossref | Google Scholar |
Hayes, M. C., Gray, P. C., Harris, G., Sedgwick, W. C., Crawford, V. D., Chazal, N., Crofts, S., and Johnston, D. W. (2021). Drones and deep learning produce accurate and efficient monitoring of large-scale seabird colonies. Ornithological Applications 123(3), duab022.
| Crossref | Google Scholar |
IUCN (2025). Pteropodidae (spatial data). The IUCN Red List of Threatened Species 2024(2). Available at https://www.iucnredlist.org [accessed 17 February 2025].
Kingston, T., Florens, F. B. V., and Vincenot, C. E. (2023). Large Old World fruit bats on the brink of extinction: causes and consequences. Annual Review of Ecology, Evolution, and Systematics 54, 237-257.
| Crossref | Google Scholar |
Lachman, D., Conway, C., Vierling, K., and Matthews, T. (2020). Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: a demonstration with Western Grebes. Wetlands Ecology and Management 28(5), 837-845.
| Crossref | Google Scholar |
Lindenmayer, D. B., Gibbons, P., Bourke, M., Burgman, M., Dickman, C. R., Ferrier, S., Fitzsimons, J., Freudenberger, D., Garnett, S. T., Groves, C., Hobbs, R. J., Kingsford, R. T., Krebs, C., Legge, S., Lowe, A. J., Mclean, R., Montambault, J., Possingham, H., Radford, J., Robinson, D., Smallbone, L., Thomas, D., Varcoe, T., Vardon, M., Wardle, G., Woinarski, J., and Zerger, A. (2012). Improving biodiversity monitoring. Austral Ecology 37(3), 285-294.
| Crossref | Google Scholar |
Lindenmayer, D., Woinarski, J., Legge, S., Southwell, D., Lavery, T., Robinson, N., Scheele, B., and Wintle, B. (2020). A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. Journal of Environmental Management 262, 110312.
| Crossref | Google Scholar |
Lopes, C., Firth, C., and Laurance, S. G. W. (2024). Occupancy of urban roosts by spectacled flying-foxes (Pteropus conspicillatus) is not affected by diurnal microclimate. Austral Ecology 49(2), e13487.
| Crossref | Google Scholar |
Lyons, M. B., Brandis, K. J., Murray, N. J., Wilshire, J. H., McCann, J. A., Kingsford, R. T., and Callaghan, C. T. (2019). Monitoring large and complex wildlife aggregations with drones. Methods in Ecology and Evolution 10(7), 1024-1035.
| Crossref | Google Scholar |
Marchowski, D. (2021). Drones, automatic counting tools, and artificial neural networks in wildlife population censusing. Ecology and Evolution 11(22), 16214-16227.
| Crossref | Google Scholar |
McCarthy, E. D., Martin, J. M., Boer, M. M., and Welbergen, J. A. (2021). Drone-based thermal remote sensing provides an effective new tool for monitoring the abundance of roosting fruit bats. Remote Sensing in Ecology and Conservation 7(3), 461-474.
| Crossref | Google Scholar |
McCarthy, E. D., Martin, J. M., Boer, M. M., and Welbergen, J. A. (2022). Ground-based counting methods underestimate true numbers of a threatened colonial mammal: an evaluation using drone-based thermal surveys as a reference. Wildlife Research 50(6), 484-493.
| Crossref | Google Scholar |
McConkey, K. R., and Drake, D. R. (2006). Flying foxes cease to function as seed dispersers long before they become rare. Ecology 87(2), 271-276.
| Crossref | Google Scholar |
Norris, E. B. B., and Larson, J. (2025). Thermal drones are highly effective for detecting elusive Bennett’s tree kangaroos (Dendrolagus bennettianus) in Australia’s tropical rainforests. Australian Mammalogy 47(1), AM24053.
| Crossref | Google Scholar |
Parsons, J. G., Robson, S. K. A., and Shilton, L. A. (2011). Roost fidelity in spectacled flying-foxes Pteropus conspicillatus: implications for conservation and management. In ‘Biology and Conservation of Australasian Bats. Vol. 35. (Eds L. Bradley, E. Peggy, L. Daniel, L. Lindy.) pp. 66–71. (Royal Zoological Society of New South Wales: Sydney, NSW, Australia)
Rahman, D. A., Setiawan, Y., Rahman, A. A. A. F., and Martiyani, T. R. (2021). Javan langur responses to the repeated exposure of ground survey and novel stimulus, unmanned aerial vehicles. IOP Conference Series: Earth and Environmental Science 948, 012006.
| Crossref | Google Scholar |
Reeder, D. M., Kosteczko, N. S., Kunz, T. H., and Widmaier, E. P. (2006). The hormonal and behavioral response to group formation, seasonal changes, and restraint stress in the highly social Malayan Flying Fox (Pteropus vampyrus) and the less social Little Golden-mantled Flying Fox (Pteropus pumilus) (Chiroptera: Pteropodidae). Hormones and Behavior 49(4), 484-500.
| Crossref | Google Scholar |
Roberts, B., Eby, P., and Westcott, D. (2020). Pteropus conspicillatus. The IUCN Red List of Threatened Species 2020: e.T18721A22080456. https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T18721A22080456.en
Seegobin, V. O., Oleksy, R. Z., and Florens, F. B. V. (2024). Foraging habitat quality of an Endangered mass-culled flying fox is reduced by alien plant invasion and improved by alien plant control. Journal for Nature Conservation 78, 126569.
| Crossref | Google Scholar |
Vallecillo, D., Gauthier-Clerc, M., Guillemain, M., Vittecoq, M., Vandewalle, P., Roche, B., and Champagnon, J. (2021). Reliability of animal counts and implications for the interpretation of trends. Ecology and Evolution 11(5), 2249-2260.
| Crossref | Google Scholar |
Virtue, J., Turner, D., Williams, G., Zeliadt, S., Walshaw, H., and Lucieer, A. (2023). Burrow-nesting seabird survey using UAV-mounted thermal sensor and count automation. Drones 7(11), 674.
| Crossref | Google Scholar |
Weimerskirch, H., Prudor, A., and Schull, Q. (2018). Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biology 41(2), 259-266.
| Crossref | Google Scholar |
Welbergen, J. A. (2006). Timing of the evening emergence from day roosts of the grey-headed flying fox, Pteropus poliocephalus: The effects of predation risk, foraging needs, and social context. Behavioral Ecology and Sociobiology 60(3), 311-322.
| Crossref | Google Scholar |
Westcott, D., and McKeown, A. (2004). Observer error in exit counts of flying-foxes (Pteropus spp.). Wildlife Research 31(5), 551-558.
| Crossref | Google Scholar |
Westcott, D. A., Fletcher, C. S., McKeown, A., and Murphy, H. T. (2012). Assessment of monitoring power for highly mobile vertebrates. Ecological Applications 22(1), 374-383.
| Crossref | Google Scholar |
Westcott, D. A., Caley, P., Heersink, D. K., and McKeown, A. (2018). A state-space modelling approach to wildlife monitoring with application to flying-fox abundance. Scientific Reports 8, 4038.
| Crossref | Google Scholar |
Witt, R. R., Beranek, C. T., Howell, L. G., Ryan, S. A., Clulow, J., Jordan, N. R., Denholm, B., and Roff, A. (2020). Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS One 15, e0242204.
| Crossref | Google Scholar |