STRUCTURAL-STRATIGRAPHIC DEVELOPMENT OF THE GIDGEALPA-MERRIMELIA-INNAMINCKA TREND WITH IMPLICATIONS FOR PETROLEUM TRAP STYLES, COOPER BASIN, AUSTRALIA
S.N. Apak, W.J. Stuart and N.M. Lemon
The APPEA Journal
33(1) 94 - 104
Published: 1993
Abstract
A successful approach to basin analysis requires the broad-scale reconstruction of the three dimensional depositional systems in relation to concurrent structural development of the basin. The Gidgealpa-Merrimelia-lnnamincka (GMI) Trend is a prominent, asymmetric, mildly compressional anticlinal trend located in the Late Carboniferous to Triassic Cooper Basin. Its northwest flank is controlled by high angle thrust faults which were reactivated repeatedly throughout geological time. The present study addresses both the structural style and depositional character of the GMI Trend, focusing on selected areas. It is an integrated approach utilising wire-line logs, seismic interpretation, isopach and structural maps and detailed palynology. This approach has produced a detailed chronostratigraphic subdivision of the Permo-Triassic sequence, particularly the Patchawarra Formation, which points to evidence of synsedimentary tectonics. Evidence from crestal unconformities suggests that the GMI Trend was uplifted during at least four distinct structural episodes. These phases of uplift result from the rejuvenation of pre-Permian faults. Regional investigation of chronostratigraphic units incorporating palynological information, clearly demonstrates the palaeogeography and the presence of internal unconformities within the Patchawarra Formation. Subsurface distribution of hydrocarbon pools and improved definition of areas of prospectivity relate to the episodic uplifts. Although known hydrocarbon reserves have largely accumulated in structural traps, additional potential exploration targets in the Permian sequence exist in stratigraphic, combination, pinchout and downflank fault traps as well as onlap plays along the mid flank areas of the GMI Trend.https://doi.org/10.1071/AJ92008
© CSIRO 1993