OIL MIGRATION HISTORY OF THE OFFSHORE CANNING BASIN
The APPEA Journal
40(2) 133 - 151
Published: 2000
Abstract
The dual issues of the presence or absence of a viable, oil-prone petroleum system and reservoir quality represent key exploration uncertainties in the lightly explored Offshore Canning Basin, North West Shelf. To better quantify these factors, a detailed fluid inclusion investigation of potential reservoir horizons within the basin has been undertaken. The results have been integrated with regional petroleum geology and Synthetic Aperture Radar (SAR) oil seep data to better understand the oil migration risk in the region.The fluid inclusion data provide confirmation of widespread oil migration at multiple Mesozoic and Palaeozoic levels, including those wells that are remote from the likely source kitchens. The lack of evidence for present or palaeo-oil accumulations is consistent with the proposition that none of the currently water-wet wells appear to have tested a valid structure. These observations, when combined with the presence of numerous direct hydrocarbon indicators on seismic data and a number of oil slicks (from SAR data) at the basin’s edge, suggest that the potential for oil charge to valid structures is much higher than previously recognised.
Petrographic analysis of the tight, gas-bearing, Triassic sandstones in Phoenix–1 suggests that the low porosity and permeability is the result of late poikilotopic carbonate cement. Significantly, the presence of oil inclusions within quartz overgrowths that pre-date the carbonate indicates that oil migration began prior to crystallisation of carbonate. Fluid inclusion palaeotemperatures combined with a 1D basin model suggest that trapping of oil as inclusions occurred in the Early to Middle Cretaceous and that predictions of reservoir quality using available water-wet wells could seriously under-estimate porositypermeability levels in potential traps that were charged with oil at about 100 Ma. Indeed, acid leaching of core plugs from Phoenix–1 indicates that removal of diagenetic carbonate results in significant permeability increase with obvious implications for the producibility of any future oil discovery. Further, evidence of Early Cretaceous oil charge has implications for the size and locality of source kitchens compared to that observed at the current day.
Collectively, the data indicate the area has received widespread oil migration and suggest future exploration, even to relatively deep levels, may be successful if valid traps can be delineated.
https://doi.org/10.1071/AJ99069
© CSIRO 2000