Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

APPLICATION OF THE DETACHMENT MODEL FOR CONTINENTAL EXTENSION TO HYDROCARBON EXPLORATION IN EXTENSIONAL BASINS

M. A. Etheridge, P. A. Symonds and T. G. Powell

The APPEA Journal 29(2) 99 - 99
Published: 1989

Abstract

The extension of the continental lithosphere that gives rise to continental rifts and eventually to passive continental margins and their basins is considered generally to involve shear on one or more major, shallow dipping normal faults (detachments). The operation of these detachments induces a basic asymmetry into the extensional terrane that is analogous to that in thrust terranes. As a result, the two sides of a continental rift and conjugate passive margin segments are predicted to have contrasting structure, facies development, subsidence history and thermal evolution.

The major structural consequence of the detachment model is that half- graben rather than full graben geometry is expected in rift basins, consistent with recent interpretations in a wide range of continental rifts and passive margins. Half- graben geometry dominates in the Bass Strait basins, the Canning Basin and in a number of Proterozoic rifts, and has been observed on most parts of the Australian continental margin. Variations in the along- strike geometry of extensional basins are accommodated by transfer faults or fault zones. Transfer faults are as important and widespread in rifts as the classical normal faults, and they have important consequences for hydrocarbon exploration (e.g. design of seismic surveys, structural interpretation of seismic data, play and lead development).

The fundamental asymmetry of extensional basins, and their compartmentalisation by transfer faults also control to a large extent the distribution of both source and reservoir facies. A model for facies distribution in a typical rift basin is presented, together with its implications for the prime locations of juxtaposed sources and reservoirs. Maturation of syn- rift source rocks depends on both the regional heat flow history and the amount of post- rift subsidence (and therefore burial). Both of these factors are influenced, and are partly predictable by the detachment model. In particular, there may be substantial horizontal offset of both the maximum thermal anomaly and the locus of post- rift subsidence from the rift basin. Analysis of deep crustal geophysical data may aid in the interpretation of detachment geometry and, therefore, of the gross distribution of thermal and subsidence histories.

https://doi.org/10.1071/AJ88062

© CSIRO 1989

Committee on Publication Ethics


Export Citation