Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

METHANE DRAINAGE POTENTIAL OF THE NORTHERN BOWEN BASIN

R. M. Bell

The APPEA Journal 27(1) 281 - 288
Published: 1987

Abstract

Large volumes of methane plus some other gases are generated during the coalification process. Under suitable conditions some of this gas is adsorbed within the microporosity of coals. The rate at which the gas can desorb is a function of the permeability, degree of fracturing or cleating, moisture content, geochemistry of the coals, and the pressure differential. Flow rates from coals are generally low but can be dramatically improved by artificial stimulation and techniques such as lateral drilling.

Methane drainage or coal de-methanisation has been carried out for many years, primarily for safety reasons. The resource value of methane in coal seams is now being recognised and considerable research is being undertaken both overseas and in Australia.

In the Northern Bowen Basin, several million tonnes of coal are mined each year. The main seams of the Permian Collinsville, Moranbah, German Creek, and Rangal Coal Measures are generally thick and laterally extensive. The area north of Blackwater probably contains more than 100 billion tonnes of coal from which several hundred billion m3 (several Bcf) methane could conceivably be recovered in those areas where the coals are too deep for commercial exploitation.

The coals of the Northern Bowen Basin are considered to have better physical parameters for the commercial development of methane drainage projects than those of the central and southern Bowen Basin where methane drainage projects were undertaken several years ago. It is estimated that more than 85 million m3 (3 Bcf) of recoverable gas per square km could be present in some areas. This gas can probably be produced for less than $1.50/GJ (1 Mcft, a figure which compares favourably with many conventional natural gas sources.

The Northern Bowen Basin is well-situated with respect to potential gas markets at Townsville and Gladstone. The gas could also be used as a chemical feedstock for products such as ammonia, fertilisers, explosives or synfuels, with the plants located close to the producing wells, thus significantly reducing gas transport costs.

https://doi.org/10.1071/AJ86022

© CSIRO 1987

Committee on Publication Ethics


Export Citation