Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

HYDROCARBON HABITAT OF THE COOPER/EROMANGA BASIN, AUSTRALIA

A. J. Kantsler, T. J. C. Prudence, A. C. Cook and M. Zwigulis

The APPEA Journal 23(1) 75 - 92
Published: 1983

Abstract

The Cooper Basin is a complex intracratonic basin containing a Permian-Triassic succession which is uncomformably overlain by Jurassic-Cretaceous sediments of the Eromanga Basin. Abundant inertinite-rich humic source rocks in the Permian coal measures sequence have sourced some 3TCF recoverable gas and 300 million barrels recoverable natural gas liquids and oil found to date in Permian sandstones. Locally developed vitrinitic and exinite-rich humic source rocks in the Jurassic to Lower Cretaceous section have, together with Permian source rocks, contributed to a further 60 million barrels of recoverable oil found in fluvial Jurassic-Cretaceous sandstones.

Maturity trends vary across the basin in response to a complex thermal history, resulting in a present-day geothermal gradient which ranges from 3.0°C/100 m to 6.0°C/100 m. Permian source rocks are generally mature to postmature for oil generation, and oil/condensate-prone and dry gas-prone kitchens exist in separate depositional troughs. Jurassic source rocks generally range from immature to mature but are postmature in the central Nappamerri Trough. The Nappamerri Trough is considered to have been the most prolific Jurassic oil kitchen because of the mature character of the crudes found in Jurassic reservoirs around its flanks.

Outside the central Nappamerri Trough, maturation modelling studies show that most hydrocarbon generation followed rapid subsidence during the Cenomanian. Most syndepositional Permian structures are favourably located in time and space to receive this hydrocarbon charge. Late formed structures (Mid-Late Tertiary) are less favourably situated and are rarely filled to spill point.

The high CO2 contents of the Permian gas (up to 50 percent) may be related to maturation of the humic Permian source rocks and thermal degradation of Permian crudes. However, the high δ13C of the CO2 (av. −6.9 percent) suggests some mixing with CO2 derived from thermal breakdown of carbonates within both the prospective sequence and economic basement.

https://doi.org/10.1071/AJ82008

© CSIRO 1983

Committee on Publication Ethics


Export Citation Cited By (2)

View Dimensions