Register      Login
The APPEA Journal The APPEA Journal Society
Journal of Australian Energy Producers
RESEARCH ARTICLE

ROCK PHYSICS—APPLICATION TO GEOLOGICAL STORAGE OF CO2

J.J. McKenna, B. Gurevich, M. Urosevic and B.J. Evans

The APPEA Journal 43(1) 567 - 576
Published: 2003

Abstract

Sequestration of anthropogenic CO2 into underground brine-saturated reservoirs is an immediate option for Australia to reduce CO2 emissions into the atmosphere. Many sites for CO2 storage have been defined within many Australian sedimentary basins. It is anticipated that seismic technology will form the foundation for monitoring CO2 storage within the subsurface, although it is recognised that several other technologies will also be used in support of seismic or in situations where seismic recording is not suitable. The success of seismic monitoring will be determined by the magnitude of the change in the elastic properties of the reservoir during the lifecycle of CO2 storage. In the short-term, there will be a strong contrast in density and compressibility between free CO2 and brine. The contrast between these fluids is greater at shallower depth and higher temperature where CO2 resembles a vapour. The significant change in the elastic moduli of the reservoir will enable time-lapse seismic methods to readily monitor structural or hydrodynamic trapping of CO2 below an impermeable seal. Because the acoustic contrast between brine saturated with CO2 and brine containing no dissolved CO2 is very slight, however, dissolved CO2 is unlikely to be detected by any seismic technology, including high-resolution borehole seismic. The detection of increases in porosity, associated with dissolution of susceptible minerals within the reservoir may provide a means for qualitative monitoring of CO2 dissolution. Conversion of aqueous CO2 into carbonate minerals should cause a detectable rise in the elastic moduli of the rock frame, especially the shear moduli. The magnitude of this rise increases with depth and demonstrates the potential contribution that can be made from repeated shear-wave and multi-component seismic measurements. Forward modelling suggests that the optimal reservoir depth for seismic monitoring of CO2 storage within an unconsolidated reservoir is between 1,000 and 2,500 m. Higher reservoir temperature is also preferred so that free CO2 will resemble a vapour.

https://doi.org/10.1071/AJ02030

© CSIRO 2003

Committee on Publication Ethics


Export Citation

View Dimensions