Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation

A. S. Alcântara-Neto A , M. Fernandez-Rufete B , E. Corbin A , G. Tsikis A , R. Uzbekov C D , A. S. Garanina C E , P. Coy B , C. Almiñana A F * and P. Mermillod https://orcid.org/0000-0002-9836-2506 A G *
+ Author Affiliations
- Author Affiliations

A Unité Mixte de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique (INRA), 37380 Nouzilly, France.

B Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, IMIB-Arixaca, Spain.

C Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 37000 Tours, France.

D Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992, Leninskye gory 73, Moscow, Russian Federation.

E Present address: National University of Science and Technology ‘MISiS’, 119049, Moscow, Russian Federation.

F Present address: University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, Department of Farm Animals, VetSuisse Faculty, Zurich, Switzerland.

G Corresponding author: Email: pascal.mermillod@inra.fr

Reproduction, Fertility and Development 32(4) 409-418 https://doi.org/10.1071/RD19058
Submitted: 11 February 2019  Accepted: 18 July 2019   Published: 28 November 2019

Abstract

High polyspermy is one of the major limitations of porcine in vitro fertilisation (IVF). The addition of oviductal fluid (OF) during IVF reduces polyspermy without decreasing the fertilisation rate. Because extracellular vesicles (EVs) have been described as important OF components, the aim of this study was to evaluate the effect of porcine oviductal EVs (poEVs) on IVF efficiency compared with porcine OF (fresh and lyophilised). OF was collected from abattoir oviducts by phosphate-buffered saline flush, and poEVs were isolated by serial ultracentrifugation. Four IVF treatments were conducted: poEVs (0.2 mg mL–1), OF (10%), lyophilized and reconstituted pure OF (LOF; 1%) and IVF without supplementation (control). Penetration, monospermy and IVF efficiency were evaluated. Transmission electron microscopy showed an EVs population primarily composed of exosomes (83%; 30–150 nm). Supplementation with poEVs during IVF increased monospermy compared with control (44% vs 17%) while maintaining an acceptable penetration rate (61% vs 78% respectively) in a similar way to OF and LOF. Western blotting revealed poEVs proteins involved in early reproductive events, including zona pellucida hardening. In conclusion, our finding show that poEVs are key components of porcine OF and may play roles in porcine fertilisation and polyspermy regulation, suggesting that supplementation with poEVs is a reliable strategy to decrease porcine polyspermy and improve in vitro embryo production outcomes.

Additional keywords: fallopian tube, oocyte, spermatozoa, zona pellucida.


References

Abe, H., Sendai, Y., Satoh, T., and Hoshi, H. (1995). Bovine oviduct-specific glycoprotein: a potent factor for maintenance of viability and motility of bovine spermatozoa in vitro. Mol. Reprod. Dev. 42, 226–232.
Bovine oviduct-specific glycoprotein: a potent factor for maintenance of viability and motility of bovine spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 8562068PubMed |

Abeydeera, L. R., and Day, B. N. (1997). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 9314573PubMed |

Al-Dossary, A. A., and Martin-Deleon, P. A. (2016). Role of exosomes in the reproductive tract. Oviductosomes mediate interactions of oviductal secretion with gametes/early embryo. Front. Biosci. 21, 1278–1285.
Role of exosomes in the reproductive tract. Oviductosomes mediate interactions of oviductal secretion with gametes/early embryo.Crossref | GoogleScholarGoogle Scholar |

Al-Dossary, A. A., Strehler, E. E., and Martin-DeLeon, P. A. (2013). Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One 8, e80181.
Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm.Crossref | GoogleScholarGoogle Scholar | 24244642PubMed |

Algarra, B., Maillo, V., Avilés, M., Gutiérrez-Adán, A., Rizos, D., and Jiménez-Movilla, M. (2018). Effects of recombinant OVGP1 protein on in vitro bovine embryo development. J. Reprod. Dev. 64, 433–443.
Effects of recombinant OVGP1 protein on in vitro bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 30078833PubMed |

Almiñana, C., Gil, M. A., Cuello, C., Roca, J., Vazquez, J. M., Rodriguez-Martinez, H., and Martinez, E. A. (2005). Adjustments in IVF system for individual boars: value of additives and time of sperm–oocyte co-incubation. Theriogenology 64, 1783–1796.
Adjustments in IVF system for individual boars: value of additives and time of sperm–oocyte co-incubation.Crossref | GoogleScholarGoogle Scholar | 15907993PubMed |

Almiñana, C., Gil, M., Cuello, C., Caballero, I., Roca, J., Vazquez, J., and Martinez, E. (2008a). In vitro fertilization (IVF) in straws and a short gamete coincubation time improves the efficiency of porcine IVF. Reprod. Domest. Anim. 43, 747–752.
In vitro fertilization (IVF) in straws and a short gamete coincubation time improves the efficiency of porcine IVF.Crossref | GoogleScholarGoogle Scholar | 18564318PubMed |

Almiñana, C., Gil, M. A., Cuello, C., Parrilla, I., Roca, J., Vazquez, J. M., and Martinez, E. A. (2008b). Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization. Anim. Reprod. Sci. 106, 393–401.
Effects of ultrashort gamete co-incubation time on porcine in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 17692478PubMed |

Almiñana, C., Corbin, E., Tsikis, G., Alcântara-Neto, A. S., Labas, V., Reynaud, K., Galio, L., Uzbekov, R., Garanina, A. S., Druart, X., and Mermillod, P. (2017). Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk. Reproduction 154, 253–268.
Oviduct extracellular vesicles protein content and their role during oviduct–embryo cross-talk.Crossref | GoogleScholarGoogle Scholar |

Almiñana, C., Tsikis, G., Labas, V., Uzbekov, R., da Silveira, J. C., Bauersachs, S., and Mermillod, P. (2018). Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes–oviduct interactions and the environment of the potential embryo. BMC Genomics 19, 622–649.
Deciphering the oviductal extracellular vesicles content across the estrous cycle: implications for the gametes–oviduct interactions and the environment of the potential embryo.Crossref | GoogleScholarGoogle Scholar | 30134841PubMed |

Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar | 20584881PubMed |

Avilés, M., Coy, P., and Rizos, D. (2015). The oviduct: a key organ for the success of early reproductive events. Anim. Front. 5, 25–31.
The oviduct: a key organ for the success of early reproductive events.Crossref | GoogleScholarGoogle Scholar |

Ballester, L., Romero-Aguirregomezcorta, J., Soriano-Úbeda, C., Matás, C., Romar, R., and Coy, P. (2014). Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency. Fertil. Steril. 102, 1762–1768.e1.
Timing of oviductal fluid collection, steroid concentrations, and sperm preservation method affect porcine in vitro fertilization efficiency.Crossref | GoogleScholarGoogle Scholar | 25241366PubMed |

Batista, R. I. T. P., Moro, L. N., Corbin, E., Alminana, C., Souza-Fabjan, J. M. G., de Figueirêdo Freitas, V. J., and Mermillod, P. (2016). Combination of oviduct fluid and heparin to improve monospermic zygotes production during porcine in vitro fertilization. Theriogenology 86, 495–502.
Combination of oviduct fluid and heparin to improve monospermic zygotes production during porcine in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Bidarimath, M., Khalaj, K., Kridli, R. T., Kan, F. W. K., Koti, M., and Tayade, C. (2017). Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus–endometrial cross-talk. Sci. Rep. 7, 40476.
Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus–endometrial cross-talk.Crossref | GoogleScholarGoogle Scholar | 28079186PubMed |

Bodin, S., Planchon, D., Rios Morris, E., Comunale, F., and Gauthier-Rouviere, C. (2014). Flotillins in intercellular adhesion – from cellular physiology to human diseases. J. Cell Sci. 127, 5139–5147.
Flotillins in intercellular adhesion – from cellular physiology to human diseases.Crossref | GoogleScholarGoogle Scholar | 25413346PubMed |

Buhi, W. C. (2002). Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein. Reproduction 123, 355–362.
Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoprotein.Crossref | GoogleScholarGoogle Scholar | 11882012PubMed |

Buhi, W. C., Alvarez, I. M., Sudhipong, V., and Dones-Smith, M. M. (1990). Identification and characterization of de novo-synthesized porcine oviductal secretory proteins. Biol. Reprod. 43, 929–938.
Identification and characterization of de novo-synthesized porcine oviductal secretory proteins.Crossref | GoogleScholarGoogle Scholar | 2291929PubMed |

Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 10729726PubMed |

Burns, G. W., Brooks, K. E., and Spencer, T. E. (2016). Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol. Reprod. 94, .
Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar | 26819476PubMed |

Bussière, J. F., Bertaud, G., and Guillouet, P. (2000). Conservation of boar semen by freezing. Evaluation in vivo and after insemination. Journées de la Recherche Porcine en France 32, 429–432.
Conservation of boar semen by freezing. Evaluation in vivo and after insemination.Crossref | GoogleScholarGoogle Scholar |

Carrasco, L. C., Romar, R., Avilés, M., Gadea, J., and Coy, P. (2008). Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle. Reproduction 136, 833–842.
Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 18753246PubMed |

Clark, S. G., Haubert, K., Beebe, D. J., Ferguson, C. E., and Wheeler, M. B. (2005). Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 5, 1229–1232.
Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 16234945PubMed |

Coy, P., and Avilés, M. (2010). What controls polyspermy in mammals, the oviduct or the oocyte? Biol. Rev. 85, 593–605.
What controls polyspermy in mammals, the oviduct or the oocyte?Crossref | GoogleScholarGoogle Scholar | 20039874PubMed |

Coy, P., and Romar, R. (2002). In vitro production of pig embryos: a point of view. Reprod. Fertil. Dev. 14, 275–286.
In vitro production of pig embryos: a point of view.Crossref | GoogleScholarGoogle Scholar | 12467351PubMed |

Coy, P., Martínez, E., Ruiz, S., Vázquez, J. M., Roca, J., and Matas, C. (1993). Sperm concentration influences fertilization and male pronuclear formation in vitro in pigs. Theriogenology 40, 539–546.
Sperm concentration influences fertilization and male pronuclear formation in vitro in pigs.Crossref | GoogleScholarGoogle Scholar | 16727337PubMed |

Coy, P., Canovas, S., Mondejar, I., Saavedra, M. D., Romar, R., Grullon, L., Matas, C., and Aviles, M. (2008). Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc. Natl Acad. Sci. USA 105, 15809–15814.
Oviduct-specific glycoprotein and heparin modulate sperm–zona pellucida interaction during fertilization and contribute to the control of polyspermy.Crossref | GoogleScholarGoogle Scholar | 18838686PubMed |

Coy, P., Lloyd, R., Romar, R., Satake, N., Matas, C., Gadea, J., and Holt, W. V. (2010). Effects of porcine pre-ovulatory oviductal fluid on boar sperm function. Theriogenology 74, 632–642.
Effects of porcine pre-ovulatory oviductal fluid on boar sperm function.Crossref | GoogleScholarGoogle Scholar | 20363019PubMed |

da Silveira, J. C., Carnevale, E. M., Winger, Q. A., and Bouma, G. J. (2014). Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod. Biol. Endocrinol. 12, 44.
Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare.Crossref | GoogleScholarGoogle Scholar | 24884710PubMed |

Dang-Nguyen, T. Q., Somfai, T., Haraguchi, S., Kikuchi, K., Tajima, A., Kanai, Y., and Nagai, T. (2011). In vitro production of porcine embryos: current status, future perspectives and alternative applications. Anim. Sci. J. 82, 374–382.
In vitro production of porcine embryos: current status, future perspectives and alternative applications.Crossref | GoogleScholarGoogle Scholar | 21615829PubMed |

Ducibella, T. (1996). The cortical reaction and development of activation competence in mammalian oocytes. Hum. Reprod. Update 2, 29–42.
The cortical reaction and development of activation competence in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 9079401PubMed |

Ducibella, T., and Buetow, J. (1994). Competence to undergo normal, fertilization-induced cortical activation develops after metaphase I of meiosis in mouse oocytes. Dev. Biol. 165, 95–104.
Competence to undergo normal, fertilization-induced cortical activation develops after metaphase I of meiosis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 8088454PubMed |

Familari, M., Cronqvist, T., Masoumi, Z., and Hansson, S. R. (2017). Placenta-derived extracellular vesicles: their cargo and possible functions. Reprod. Fertil. Dev. 29, 433–451.
Placenta-derived extracellular vesicles: their cargo and possible functions.Crossref | GoogleScholarGoogle Scholar | 26411402PubMed |

Fazeli, A., Elliott, R. M. A., Duncan, A. E., Moore, A., Watson, P. F., and Holt, W. V. (2003). In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations. Reproduction 125, 509–517.
In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal apical plasma membrane preparations.Crossref | GoogleScholarGoogle Scholar | 12683921PubMed |

Février, B., and Raposo, G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421.
Exosomes: endosomal-derived vesicles shipping extracellular messages.Crossref | GoogleScholarGoogle Scholar | 15261674PubMed |

Gandolfi, F., Passoni, L., Modina, S., Brevini, T. A., Varga, Z., and Lauria, A. (1993). Similarity of an oviduct-specific glycoprotein between different species. Reprod. Fertil. Dev. 5, 433–443.
Similarity of an oviduct-specific glycoprotein between different species.Crossref | GoogleScholarGoogle Scholar | 8153393PubMed |

Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P. L., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
Gametes alter the oviductal secretory proteome.Crossref | GoogleScholarGoogle Scholar | 16105986PubMed |

Gerke, V., and Moss, S. E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.
Annexins: from structure to function.Crossref | GoogleScholarGoogle Scholar | 11917092PubMed |

Gil, M. A., Ruiz, M., Vazquez, J. M., Roca, J., Day, B. N., and Martinez, E. A. (2004). Effect of short periods of sperm–oocyte coincubation during in vitro fertilization on embryo development in pigs. Theriogenology 62, 544–552.
Effect of short periods of sperm–oocyte coincubation during in vitro fertilization on embryo development in pigs.Crossref | GoogleScholarGoogle Scholar | 15226010PubMed |

Gil, M. A., Almiñana, C., Cuello, C., Parrilla, I., Roca, J., Vazquez, J. M., and Martinez, E. A. (2007). Brief coincubation of gametes in porcine in vitro fertilization: role of sperm : oocyte ratio and post-coincubation medium. Theriogenology 67, 620–626.
Brief coincubation of gametes in porcine in vitro fertilization: role of sperm : oocyte ratio and post-coincubation medium.Crossref | GoogleScholarGoogle Scholar | 17055043PubMed |

Gonçalves, R. F., Staros, A., and Killian, G. (2008). Oviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm–egg binding, fertilization and embryo development. Reprod. Domest. Anim. 43, 720–729.
Oviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm–egg binding, fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar | 18484958PubMed |

Gulyas, B. J. (1980). Cortical granules of mammalian eggs. Int. Rev. Cytol. 63, 357–392.
Cortical granules of mammalian eggs.Crossref | GoogleScholarGoogle Scholar | 395132PubMed |

Guraya, S. S. (1982). Recent progress in the structure, origin, composition, and function of cortical granules in animal egg. Int. Rev. Cytol. 78, 257–360.
Recent progress in the structure, origin, composition, and function of cortical granules in animal egg.Crossref | GoogleScholarGoogle Scholar | 6216222PubMed |

Hafez, E. S. E., and Hafez, B. (2016). Folliculogenesis, egg maturation, and ovulation. ‘Reproduction in Farm Animals’. (Eds B. Hafez and E. S. Hafez.) pp. 68–81. (Lippincott Williams & Wilkins: Baltimore, MD.)10.1002/9781119265306.CH5

Hunter, R. H. F. (1991). Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29, 385–391.
Oviduct function in pigs, with particular reference to the pathological condition of polyspermy.Crossref | GoogleScholarGoogle Scholar |

Hunter, R. H., and Wilmut, I. (1984). Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct. Reprod. Nutr. Dev. 24, 597–608.
Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct.Crossref | GoogleScholarGoogle Scholar | 6549076PubMed |

Ignotz, G. G., Cho, M. Y., and Suarez, S. S. (2007). Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol. Reprod. 77, 906–913.
Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir.Crossref | GoogleScholarGoogle Scholar | 17715429PubMed |

Kadam, K. M., D’Souza, S. J., Bandivdekar, A. H., and Natraj, U. (2006). Identification and characterization of oviductal glycoprotein-binding protein partner on gametes: epitopic similarity to non-muscle myosin IIA, MYH 9. Mol. Hum. Reprod. 12, 275–282.
Identification and characterization of oviductal glycoprotein-binding protein partner on gametes: epitopic similarity to non-muscle myosin IIA, MYH 9.Crossref | GoogleScholarGoogle Scholar | 16567366PubMed |

Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 11906923PubMed |

Kikuchi, K., Somfai, T., Nakai, M., and Nagai, T. (2009). Appearance, fate and utilization of abnormal porcine embryos produced by in vitro maturation and fertilization. Soc. Reprod. Fertil. Suppl. 66, 135–147.
| 19848277PubMed |

Kim, N. H., Funahashi, H., Abeydeera, L. R., Moon, S. J., Prather, R. S., and Day, B. N. (1996). Effects of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro. J. Reprod. Fertil. 107, 79–86.
Effects of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 8699438PubMed |

King, R. S., Anderson, S. H., and Killian, G. J. (1994). Effect of bovine oviductal estrus-associated protein on the ability of sperm to capacitate and fertilize oocytes. J. Androl. 15, 468–478.
| 7860428PubMed |

Kouba, A. J., Abeydeera, L. R., Alvarez, I. M., Day, B. N., and Buhi, W. C. (2000). Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol. Reprod. 63, 242–250.
Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 10859265PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 5432063PubMed |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S.-L., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 18154692PubMed |

Lopera-Vasquez, R., Hamdi, M., Maillo, V., Gutierrez-Adan, A., Bermejo-Alvarez, P., Ramírez, M. Á., Yáñez-Mó, M., and Rizos, D. (2017). Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction 153, 461–470.
Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro.Crossref | GoogleScholarGoogle Scholar | 28104825PubMed |

Machtinger, R., Laurent, L. C., and Baccarelli, A. A. (2015). Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193.
Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation.Crossref | GoogleScholarGoogle Scholar | 26663221PubMed |

Manuel, T. J., Maria Jose, M., Adriana Maria, C., Carlos, Z., and Estela, M. P. (2017). Use of annexin V based sperm selection in assisted reproduction. Andrology-Open Access 6, 182–192.
Use of annexin V based sperm selection in assisted reproduction.Crossref | GoogleScholarGoogle Scholar |

Marchal, R., Tomanek, M., Terqui, M., and Mermillod, P. (2001). Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev. 60, 65–73.
Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 11550269PubMed |

McCauley, T. C., Buhi, W. C., Wu, G. M., Mao, J., Caamaño, J., Didion, B. A., and Day, B. N. (2003). Oviduct-specific glycoprotein modulates sperm–zona binding and improves efficiency of porcine fertilization in vitro. Biol. Reprod. 69, 828–834.
Oviduct-specific glycoprotein modulates sperm–zona binding and improves efficiency of porcine fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 12748122PubMed |

Mondéjar, I., Acuña, O., Izquierdo-Rico, M., Coy, P., and Avilés, M. (2012). The oviduct: functional genomic and proteomic approach: transcriptome and proteome of the oviduct. Reprod. Domest. Anim. 47, 22–29.
The oviduct: functional genomic and proteomic approach: transcriptome and proteome of the oviduct.Crossref | GoogleScholarGoogle Scholar | 22681295PubMed |

Mondéjar, I., Avilés, M., and Coy, P. (2013). The human is an exception to the evolutionarily-conserved phenomenon of pre-fertilization zona pellucida resistance to proteolysis induced by oviductal fluid. Hum. Reprod. 28, 718–728.
The human is an exception to the evolutionarily-conserved phenomenon of pre-fertilization zona pellucida resistance to proteolysis induced by oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 23293215PubMed |

Montecalvo, A., Larregina, A. T., Shufesky, W. J., Beer Stolz, D., Sullivan, M. L. G., Karlsson, J. M., Baty, C. J., Gibson, G. A., Erdos, G., Wang, Z., Milosevic, J., Tkacheva, O. A., Divito, S. J., Jordan, R., Lyons-Weiler, J., Watkins, S. C., and Morelli, A. E. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766.
Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes.Crossref | GoogleScholarGoogle Scholar | 22031862PubMed |

Nadalini, M., Tarozzi, N., Di Santo, M., and Borini, A. (2014). Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better then the traditional one? J. Assist. Reprod. Genet. 31, 1045–1051.
Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better then the traditional one?Crossref | GoogleScholarGoogle Scholar | 24906302PubMed |

Nagai, T. (2006). Up date of in vitro production of porcine embryos. Front. Biosci. 11, 2565.
Up date of in vitro production of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 16720334PubMed |

Ng, Y. H., Rome, S., Jalabert, A., Forterre, A., Singh, H., Hincks, C. L., and Salamonsen, L. A. (2013). Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation. PLoS One 8, e58502.
Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo–endometrial cross talk at implantation.Crossref | GoogleScholarGoogle Scholar | 23516492PubMed |

Pisitkun, T., Shen, R.-F., and Knepper, M. A. (2004). Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. USA 101, 13368–13373.
Identification and proteomic profiling of exosomes in human urine.Crossref | GoogleScholarGoogle Scholar | 15326289PubMed |

Pradeep, M. A., Jagadeesh, J., De, A. K., Kaushik, J. K., Malakar, D., Kumar, S., Dang, A. K., Das, S. K., and Mohanty, A. K. (2011). Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development. Theriogenology 75, 1005–1015.
Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development.Crossref | GoogleScholarGoogle Scholar | 21196036PubMed |

Qu, P., Qing, S., Liu, R., Qin, H., Wang, W., Qiao, F., Ge, H., Liu, J., Zhang, Y., Cui, W., and Wang, Y. (2017). Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS One 12, e0174535.
Effects of embryo-derived exosomes on the development of bovine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 29136010PubMed |

Qu, P., Zhao, Y., Wang, R., Zhang, Y., Li, L., Fan, J., and Liu, E. (2018). Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reprod. Fertil. Dev 31, 324–332.
Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice.Crossref | GoogleScholarGoogle Scholar |

Ruiz-González, I., Xu, J., Wang, X., Burghardt, R. C., Dunlap, K. A., and Bazer, F. W. (2015). Exosomes, endogenous retroviruses and Toll-like receptors: pregnancy recognition in ewes. Reproduction 149, 281–291.
Exosomes, endogenous retroviruses and Toll-like receptors: pregnancy recognition in ewes.Crossref | GoogleScholarGoogle Scholar | 25526899PubMed |

Santonocito, M., Vento, M., Guglielmino, M. R., Battaglia, R., Wahlgren, J., Ragusa, M., Barbagallo, D., Borzì, P., Rizzari, S., Maugeri, M., Scollo, P., Tatone, C., Valadi, H., Purrello, M., and Di Pietro, C. (2014). Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil. Steril. 102, 1751–1761.e1.
Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation.Crossref | GoogleScholarGoogle Scholar | 25241362PubMed |

Satoh, T., Abe, H., Sendai, Y., Iwata, H., and Hoshi, H. (1995). Biochemical characterization of a bovine oviduct-specific sialo-glycoprotein that sustains sperm viability in vitro. Biochim. Biophys. Acta 1266, 117–123.
Biochemical characterization of a bovine oviduct-specific sialo-glycoprotein that sustains sperm viability in vitro.Crossref | GoogleScholarGoogle Scholar | 7742375PubMed |

Sharifulin, D., Babaylova, E., Kossinova, O., Bartuli, Y., Graifer, D., and Karpova, G. (2013). Ribosomal protein S5e is implicated in translation initiation through its interaction with the N-terminal domain of initiation factor eIF2α. Chembiochem 14, 2136–2143.
Ribosomal protein S5e is implicated in translation initiation through its interaction with the N-terminal domain of initiation factor eIF2α.Crossref | GoogleScholarGoogle Scholar | 24106102PubMed |

Shih, Y.-T., and Hsueh, Y.-P. (2016). VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation. Nat. Commun. 7, 11020–11036.
VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.Crossref | GoogleScholarGoogle Scholar | 26984393PubMed |

Silkensen, J. R., Skubitz, K. M., Skubitz, A. P., Chmielewski, D. H., Manivel, J. C., Dvergsten, J. A., and Rosenberg, M. E. (1995). Clusterin promotes the aggregation and adhesion of renal porcine epithelial cells. J. Clin. Invest. 96, 2646–2653.
Clusterin promotes the aggregation and adhesion of renal porcine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 8675630PubMed |

Simons, M., and Raposo, G. (2009). Exosomes – vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581.
Exosomes – vesicular carriers for intercellular communication.Crossref | GoogleScholarGoogle Scholar | 19442504PubMed |

Slavík, T., and Fulka, J. (1999). Oviduct secretion contributes to the establishment of species specific barrier preventing penetration of oocytes with foreign spermatozoa. Folia Biol. (Praha) 45, 53–58.
| 10732734PubMed |

Suarez, S. S. (2007). Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction. Reprod. Fertil. Dev. 19, 103–110.
Interactions of spermatozoa with the female reproductive tract: inspiration for assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 17389139PubMed |

Suarez, S. S. (2008). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462.
Regulation of sperm storage and movement in the mammalian oviduct.Crossref | GoogleScholarGoogle Scholar | 18649258PubMed |

Sutton, R., Nancarrow, C. D., Wallace, A. L., and Rigby, N. W. (1984). Identification of an oestrus-associated glycoprotein in oviducal fluid of the sheep. J. Reprod. Fertil. 72, 415–422.
Identification of an oestrus-associated glycoprotein in oviducal fluid of the sheep.Crossref | GoogleScholarGoogle Scholar | 6542589PubMed |

Teijeiro, J. M., Ignotz, G. G., and Marini, P. E. (2009). Annexin A2 is involved in pig (Sus scrofa) sperm–oviduct interaction. Mol. Reprod. Dev. 76, 334–341.
Annexin A2 is involved in pig (Sus scrofa) sperm–oviduct interaction.Crossref | GoogleScholarGoogle Scholar | 18932200PubMed |

Théry, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30, 3.22.1–3.22.29.
Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Crossref | GoogleScholarGoogle Scholar |

Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593.
Membrane vesicles as conveyors of immune responses.Crossref | GoogleScholarGoogle Scholar | 19498381PubMed |

Tienthai, P., Kjellén, L., Pertoft, H., Suzuki, K., and Rodriguez-Martinez, H. (2000). Localization and quantitation of hyaluronan and sulfated glycosaminoglycans in the tissues and intraluminal fluid of the pig oviduct. Reprod. Fertil. Dev. 12, 173–182.
Localization and quantitation of hyaluronan and sulfated glycosaminoglycans in the tissues and intraluminal fluid of the pig oviduct.Crossref | GoogleScholarGoogle Scholar | 11302427PubMed |

Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., and Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659.
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Crossref | GoogleScholarGoogle Scholar | 17486113PubMed |

Wang, W. H., Abeydeera, L. R., Han, Y. M., Prather, R. S., and Day, B. N. (1999). Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo. Biol. Reprod. 60, 1020–1028.
Morphologic evaluation and actin filament distribution in porcine embryos produced in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 10084980PubMed |

Wheeler, M. B., and Walters, E. M. (2001). Transgenic technology and applications in swine. Theriogenology 56, 1345–1369.
Transgenic technology and applications in swine.Crossref | GoogleScholarGoogle Scholar | 11758888PubMed |