The first complete mitochondrial genomes of subterranean dytiscid diving beetles (Limbodessus and Paroster) from calcrete aquifers of Western Australia
Josephine Hyde A F , Steven J. B. Cooper A B , Pablo Munguia C , William F. Humphreys D E and Andrew D. Austin AA Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
C RMIT Studios, RMIT University, Melbourne, Vic. 3000, Australia.
D Western Australian Museum, Welshpool DC, WA 6986, Australia.
E School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.
F Corresponding author. Email: josephine.hyde@adelaide.edu.au
Australian Journal of Zoology 65(5) 283-291 https://doi.org/10.1071/ZO17076
Submitted: 12 November 2017 Accepted: 7 March 2018 Published: 16 April 2018
Abstract
Comparative analyses of mitochondrial (mt) genomes may provide insights into the genetic changes, associated with metabolism, that occur when surface species adapt to living in underground habitats. Such analyses require comparisons among multiple independently evolved subterranean species, with the dytiscid beetle fauna from the calcrete archipelago of central Western Australia providing an outstanding model system to do this. Here, we present the first whole mt genomes from four subterranean dytiscid beetle species of the genera Limbodessus (L. palmulaoides) and Paroster (P. macrosturtensis, P. mesosturtensis and P. microsturtensis) and compare genome sequences with those from surface dytiscid species. The mt genomes were sequenced using a next-generation sequencing approach employing the Illumina Miseq system and assembled de novo. All four mt genomes are circular, ranging in size from 16 504 to 16 868 bp, and encode 37 genes and a control region. The overall structure (gene number, orientation and order) of the mt genomes is the same as that found in eight sequenced surface species, but with genome size variation resulting from length variation of intergenic regions and the control region . Our results provide a basis for future investigations of adaptive evolutionary changes that may occur in mt genes when species move underground.
References
Andersson, S. G., and Kurland, C. G. (1998). Reductive evolution of resident genomes. Trends in Microbiology 6, 263–268.| Reductive evolution of resident genomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czot12nsA%3D%3D&md5=445c716fd3112437934f11dc102cd401CAS |
Balke, M., and Ribera, I. (2004). Jumping across Wallace’s line: Allodessus Guignot and Limbodessus Guignot revisited (Coleoptera: Dytiscidae, Bidessini) based on molecular–phylogenetic and morphological data. Australian Journal of Entomology 43, 114–128.
| Jumping across Wallace’s line: Allodessus Guignot and Limbodessus Guignot revisited (Coleoptera: Dytiscidae, Bidessini) based on molecular–phylogenetic and morphological data.Crossref | GoogleScholarGoogle Scholar |
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69, 313–319.
| MITOS: improved de novo metazoan mitochondrial genome annotation.Crossref | GoogleScholarGoogle Scholar |
Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
| Trimmomatic: a flexible trimmer for Illumina sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Sqt7nP&md5=34cb4d4a2e04bd7d27341a9bc0326ab3CAS |
Boore, J. L., Lavrov, D. V., and Brown, W. M. (1998). Gene translocation links insects and crustaceans. Nature 392, 667–668.
| Gene translocation links insects and crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVWmuro%3D&md5=db3138d00d9a633facaffa209ae60866CAS |
Burger, G., Gray, M. W., and Lang, B. F. (2003). Mitochondrial genomes: anything goes. Trends in Genetics 19, 709–716.
| Mitochondrial genomes: anything goes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1emsbY%3D&md5=e4c5c512ec4fc1d0e46250c9bd24f4f5CAS |
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421.
| BLAST+: architecture and applications.Crossref | GoogleScholarGoogle Scholar |
Cameron, S. L. (2014). How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Systematic Entomology 39, 400–411.
| How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research.Crossref | GoogleScholarGoogle Scholar |
Cameron, S. L., and Whiting, M. F. (2008). The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408, 112–123.
| The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFygsQ%3D%3D&md5=d3a5cf6a8e54635c8c2c9f0e690fd655CAS |
Cameron, S. L., Sullivan, J., Song, H., Miller, K. B., and Whiting, M. F. (2009). A mitochondrial genome phylogeny of the Neuropterida (lace‐wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zoologica Scripta 38, 575–590.
| A mitochondrial genome phylogeny of the Neuropterida (lace‐wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders.Crossref | GoogleScholarGoogle Scholar |
Caruccio, N. (2011). Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. In ‘High-throughput Next Generation Sequencing: Methods and Applications’. (Eds Y. M. Kwon and S. C. Ricke.) pp. 241–255. (Humana Press: Totowa, NJ.)
Chevreux, B., Wetter, T., and Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. In ‘German Conference on Bioinformatics’. pp. 45–56. (Heidelberg.)
Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., and Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–590.
| Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia.Crossref | GoogleScholarGoogle Scholar |
Culver, D. C., White, W. B., and White, W. B. (2005). ‘Encyclopedia of Caves.’ (Elsevier: Amsterdam.)
Dai, L.-S., Li, S., Yu, H.-M., Wei, G., Wang, L., Qian, C., Zhang, C.-F., Li, J., Sun, Y., and Zhao, Y. (2017). Mitochondrial genome of the sweet potato hornworm, Agrius convolvuli (Lepidoptera: Sphingidae), and comparison with other Lepidoptera species. Genome 60, 128–138.
| Mitochondrial genome of the sweet potato hornworm, Agrius convolvuli (Lepidoptera: Sphingidae), and comparison with other Lepidoptera species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVCgs70%3D&md5=8ec65e98aebaf494a5315ade028180e8CAS |
Di Lorenzo, T., Di Marzio, W. D., Spigoli, D., Baratti, M., Messana, G., Cannicci, S., and Galassi, D. M. P. (2015). Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer. Freshwater Biology 60, 426–435.
| Metabolic rates of a hypogean and an epigean species of copepod in an alluvial aquifer.Crossref | GoogleScholarGoogle Scholar |
Fenn, J., Cameron, S., and Whiting, M. (2007). The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology 16, 239–252.
| The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVKltbs%3D&md5=82e3740e02a850bf27c3daa09a966baeCAS |
Friedrich, M., and Muqim, N. (2003). Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Molecular Phylogenetics and Evolution 26, 502–512.
| Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVKntLY%3D&md5=9392dbbaca20e2c84c5c207bf486599bCAS |
Galassi, D. M. P. (2001). Groundwater copepods: diversity patterns over ecological and evolutionary scales. Hydrobiologia 453, 227–253.
| Groundwater copepods: diversity patterns over ecological and evolutionary scales.Crossref | GoogleScholarGoogle Scholar |
Grigoriev, A. (1998). Analyzing genomes with cumulative skew diagrams. Nucleic Acids Research 26, 2286–2290.
| Analyzing genomes with cumulative skew diagrams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFWmtr0%3D&md5=ad925b13b7101ec488b13085fb6bf9dfCAS |
Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine‐scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
| Fine‐scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=c53a953741faa4a0fa0382463efd0f3eCAS |
Guzik, M. T., Austin, A. D., Cooper, S. J., Harvey, M. S., Humphreys, W. F., Bradford, T, Eberhard, S. M., King, R. A., Leys, R, and Muirhead, K. A. (2011). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Hahn, C., Bachmann, L., and Chevreux, B. (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Research 41, e129.
| Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSrtbvK&md5=1c3e76b56a0f4a2b50a2bb02248b4cb0CAS |
Hüppop, K. (2000). How do cave animals cope with the food scarcity in caves? In ‘Subterranean Ecosystems: Ecosystems of the world’. Vol. 30. (Eds H. Wilkins, D. C. Culver, and W. F. Humphreys.) pp. 159–188. (Elsevier: Amsterdam.)
Hwang, U. W., Park, C. J., Yong, T. S., and Kim, W. (2001). One-step PCR amplification of complete arthropod mitochondrial genomes. Molecular Phylogenetics and Evolution 19, 345–352.
| One-step PCR amplification of complete arthropod mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1SgtL4%3D&md5=823ca0735630c604eb1fc35a0e384976CAS |
Jeffery, W. R. (2001). Cavefish as a model system in evolutionary developmental biology. Developmental Biology 231, 1–12.
| Cavefish as a model system in evolutionary developmental biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1arurg%3D&md5=373a5bea2facbf95abfc0018c2a61d46CAS |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., and Duran, C. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |
Kocher, A., Kamilari, M., Lhuillier, E., Coissac, E., Péneau, J., Chave, J., and Murienne, J. (2014). Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae). Gene 552, 184–194.
| Shotgun assembly of the assassin bug Brontostoma colossus mitochondrial genome (Heteroptera, Reduviidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyhsbbK&md5=91428eda8644ae1d0b6aa22a904d1d3cCAS |
Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359.
| Fast gapped-read alignment with Bowtie 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Oqt7c%3D&md5=f922091005537e7d4c58ca605e0c6fefCAS |
Leijs, R., Van Nes, E. H., Watts, C. H. S., Cooper, S. J. B., Humphreys, W. F., and Hogendoorn, K. (2012). Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS One 7, e34260.
| Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlslehtbg%3D&md5=d1f4e96115fa85e1ec3c14452285b8c1CAS |
Leys, R., and Watts, C. H. S. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–225.
| Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.Crossref | GoogleScholarGoogle Scholar |
Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| Evolution of subterranean diving beetles (Coleoptera: Dytiscidae Hydroporini, Bidessini) in the arid zone of Australia.Crossref | GoogleScholarGoogle Scholar |
Linard, B., Arribas, P., Andújar, C., Crampton‐Platt, A., and Vogler, A. (2016). Lessons from genome skimming of arthropod‐preserving ethanol. Molecular Ecology Resources 16, 1365–1377.
| Lessons from genome skimming of arthropod‐preserving ethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1Krs7bJ&md5=af8a96535e0afa08a693019221bde670CAS |
Pons, J., Ribera, I., Bertranpetit, J., and Balke, M. (2010). Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Molecular Phylogenetics and Evolution 56, 796–807.
| Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCnuro%3D&md5=f85d92416a0f77d80fe1b34aaeac332eCAS |
Schmieder, R., and Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864.
| Quality control and preprocessing of metagenomic datasets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Sksrg%3D&md5=40eaddf83c743d1e3ea29c4b0f0b7917CAS |
Sheffield, N., Song, H., Cameron, S., and Whiting, M. (2008). A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution 25, 2499–2509.
| A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsbvL&md5=138ab8b6b12af5111fc45aaef7d5fdbfCAS |
Song, H., Sheffield, N. C., Cameron, S. L., Miller, K. B., and Whiting, M. F. (2010). When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Systematic Entomology 35, 429–448.
| When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics.Crossref | GoogleScholarGoogle Scholar |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=31d1cf15e819c5c61d5692f0137e5af7CAS |
Wan, X., Hong, M. Y., Liao, A., Kim, M. I., Kim, K. G., Han, Y. S., and Kim, I. (2012). Complete mitochondrial genome of a carabid beetle, Damaster mirabilissimus mirabilissim (Coleoptera: Carabidae). Entomological Research 42, 44–54.
| Complete mitochondrial genome of a carabid beetle, Damaster mirabilissimus mirabilissim (Coleoptera: Carabidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCisrrK&md5=e7035537e8e907d2aeaa9a2e717c6d30CAS |
Watts, C. H. S., and Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia. Transactions of the Royal Society of South Australia 133, 62–107.
| Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp, and Exocelina Broun from underground waters in Australia.Crossref | GoogleScholarGoogle Scholar |