Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Brain size/body weight in the dingo (Canis dingo): comparisons with domestic and wild canids

Bradley P. Smith A D F , Teghan A. Lucas B C , Rachel M. Norris D and Maciej Henneberg E
+ Author Affiliations
- Author Affiliations

A School of Health, Medical and Applied Sciences, Central Queensland University, Wayville, SA 5034, Australia.

B Department of Archaeology, Flinders University, Bedford Park, SA 5042, Australia.

C School of Medical Sciences, Anatomy, University of New South Wales, Sydney, NSW 2052, Australia.

D School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.

E Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia.

F Corresponding author. Email: b.p.smith@cqu.edu.au

Australian Journal of Zoology 65(5) 292-301 https://doi.org/10.1071/ZO17040
Submitted: 2 August 2017  Accepted: 19 March 2018   Published: 12 April 2018

Abstract

Endocranial volume was measured in a large sample (n = 128) of free-ranging dingoes (Canis dingo) where body size was known. The brain/body size relationship in the dingoes was compared with populations of wild (Family Canidae) and domestic canids (Canis familiaris). Despite a great deal of variation among wild and domestic canids, the brain/body size of dingoes forms a tight cluster within the variation of domestic dogs. Like dogs, free-ranging dingoes have paedomorphic crania; however, dingoes have a larger brain and are more encephalised than most domestic breeds of dog. The dingo’s brain/body size relationship was similar to those of other mesopredators (medium-sized predators that typically prey on smaller animals), including the dhole (Cuon alpinus) and the coyote (Canis latrans). These findings have implications for the antiquity and classification of the dingo, as well as the impact of feralisation on brain size. At the same time, it highlights the difficulty in using brain/body size to distinguish wild and domestic canids.

Additional keywords: brain, Canidae, domestication, encephalisation, feralisation.


References

Anderson, T. M., Candille, S. I., Musiani, M., Greco, C., Stahler, D. R., Smith, D. W., Padhukasahasram, B., Randi, E., Leonard, J. A., Bustamante, C. D., Ostrander, E. A., Tang, H., Wayne, R. K., and Barsh, G. S. (2009). Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343.
Molecular and evolutionary history of melanism in North American gray wolves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemt7s%3D&md5=826901a78424b049363454b917b62104CAS |

Armstrong, E. (1983). Relative brain size and metabolism in mammals. Science 220, 1302–1304.
Relative brain size and metabolism in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3itlGktg%3D%3D&md5=41dc5fd24f4b34c1307346d0beabed60CAS |

Arnstein, P., Cohen, D. H., and Meyer, K. F. (1964). Dingo blood improves famous cattle dog. Journal of the American Veterinary Medical Association 145, 933–936.
| 1:STN:280:DyaF2M%2FjsFGjsw%3D%3D&md5=92b745c8e29a716266b92c0b4bb34fbcCAS |

Ashwell, K. W. S. (2008). Encephalization of Australian and New Guinean marsupials. Brain, Behavior and Evolution 71, 181–199.
Encephalization of Australian and New Guinean marsupials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3ntVWnsQ%3D%3D&md5=a6a382f7d85d9dc73d74467eb31099a1CAS |

Bekoff, M., and Gese, E. M. (2003). Coyote (Canis latrans). In ‘Wild Mammals of North America: Biology, Management and Conservation’. (Eds G. A. Feldhamer, B. C. Thompson and J. A. Chapman.) pp. 467–481. (Johns Hopkins University Press: Baltimore.)

Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., and Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. Proceedings of the National Academy of Sciences of the United States of America 113, 2532–2537.
Brain size predicts problem-solving ability in mammalian carnivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtlamurk%3D&md5=088adf3861b472dae7cc2042f738093aCAS |

Bronson, R. T. (1979). Brain weight–body weight scaling in breeds of dogs and cats. Brain, Behavior and Evolution 16, 227–236.
Brain weight–body weight scaling in breeds of dogs and cats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2FitF2rtg%3D%3D&md5=e28db3c63f1058e50324151cb47fe286CAS |

Cairns, K. M., and Wilton, A. N. (2016). New insights on the history of canids in Oceania based on mitochondrial and nuclear data. Genetica 144, 553–565.
New insights on the history of canids in Oceania based on mitochondrial and nuclear data.Crossref | GoogleScholarGoogle Scholar |

Cairns, K. M., Brown, S. K., Sacks, B. N., and Ballard, J. W. O. (2017). Conservation implications for dingoes from the maternal and paternal genome: multiple populations, dog introgression and demography. Ecology and Evolution 7, 9787–9807.
Conservation implications for dingoes from the maternal and paternal genome: multiple populations, dog introgression and demography.Crossref | GoogleScholarGoogle Scholar |

Chittka, L., and Niven, J. (2009). Are bigger brains better? Current Biology 19, R995–R1008.
Are bigger brains better?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVajtr%2FI&md5=f9915378bca7cdf011a1c8adec34e3deCAS |

Clutton-Brock, J. (2016). Origins of the dog: the archaeological evidence. In ‘The Domestic Dog: Its Evolution, Behavior and Interactions with People’. (Ed. J. Serpell.) pp. 7–21. (Cambridge University Press: Cambridge.)

Comfort, A. (1960). Longevity and mortality in dogs of four breeds. Journal of Gerontology 15, 126–129.
Longevity and mortality in dogs of four breeds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c7jtFyntQ%3D%3D&md5=4fd064d8d5708270bfe6efa0cad6206bCAS |

Coppinger, R., and Schneider, R. (1995). The evolution of working dogs. In ‘The Domestic Dog: Its Evolution, Behaviour and Interactions with People’. (Ed. J. Serpell.) pp. 21–47. (Cambridge University Press: New York.)

Crile, G., and Quiring, D. P. (1940). A record of the body weight and certain organ and gland weights of 3690 animals. The Ohio Journal of Science 40, 219–259.

Crowther, M. S., Fillios, M., Colman, N., and Letnic, M. (2014). An updated description of the Australian dingo (Canis dingo Meyer, 1793). Journal of Zoology 293, 192–203.
An updated description of the Australian dingo (Canis dingo Meyer, 1793).Crossref | GoogleScholarGoogle Scholar |

Damasceno, E. M., Hingst-Zaher, E., and Astúa, D. (2013). Bite force and encephalization in the Canidae (Mammalia: Carnivora). Journal of Zoology 290, 246–254.
Bite force and encephalization in the Canidae (Mammalia: Carnivora).Crossref | GoogleScholarGoogle Scholar |

De Miguel, C., and Henneberg, M. (1997). Encephalization of the koala, Phascolarctos cinereus. Australian Mammalogy 20, 315–320.

Deaner, R. O., Isler, K., Burkart, J., and van Schaik, C. (2007). Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, Behavior and Evolution 70, 115–124.
Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates.Crossref | GoogleScholarGoogle Scholar |

Drake, A. G., and Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: disparity and modularity. American Naturalist 175, 289–301.
Large-scale diversification of skull shape in domestic dogs: disparity and modularity.Crossref | GoogleScholarGoogle Scholar |

Durbin, L. S., Venkataraman, A., Hedges, S., and Duckworth, W. (2004). Dhole Cuon alpinus. In ‘Candids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan’. (Eds C. Sillero-Zubiri, M. Hoffmann and D. W. Macdonald.) pp. 210–218. (IUCN/SSC Canid Specialist Group: Gland, Switzerland and Cambridge, UK.)

Ebinger, P. (1980). Zur Hirn-Körpergewichtsbeziehung bei Wölfen und Haushunden sowie Haushundrassen. Zeitschrift für Saugetierkunde 45, 148–153.

Elledge, A. E., Allen, L. R., Carlsson, B. L., Wilton, A. N., and Leung, L. K. P. (2008). An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildlife Research 35, 812–820.
An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation.Crossref | GoogleScholarGoogle Scholar |

Geiger, M., Evin, A., Sánchez-Villagra, M. R., Gascho, D., Mainini, C., and Zollikofer, C. P. (2017). Neomorphosis and heterochrony of skull shape in dog domestication. Scientific Reports 7, 13443.
Neomorphosis and heterochrony of skull shape in dog domestication.Crossref | GoogleScholarGoogle Scholar |

Gittleman, J. L. (1986). Brain size, behavioural ecology, and phylogeny. Journal of Mammalogy 67, 23–36.
Brain size, behavioural ecology, and phylogeny.Crossref | GoogleScholarGoogle Scholar |

Gompertz, R. H. C. (1902). Specific gravity of the brain. The Journal of Physiology 27, 459–462.
Specific gravity of the brain.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2FntFCmug%3D%3D&md5=fb9de8235be352338e4e6f876decd22cCAS |

Healy, S. D., and Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings. Biological Sciences 274, 453–464.
A critique of comparative studies of brain size.Crossref | GoogleScholarGoogle Scholar |

Hemmer, H. (1971). Beitrag zur Erfassung der progressiven Cephalisation bei Primaten. In ‘Proceedings of the 3rd International Congress of Primatology, Zürich 1970, volume I’. pp. 99–107. (Karger: Basel.)

Hemmer, H. (1990). ‘Domestication: the Decline of Environmental Appreciation.’ (Cambridge University Press: London.)

Henneberg, M. (1990). Brain size/body weight variability in Homo sapiens: consequences for interpreting hominid evolution. Homo 39, 121–130.

Hillis, T. L., and Mallory, F. F. (1996). Sexual dimorphism in wolves (Canis lupus) of the Keewatin District, Northwest Territories, Canada. Canadian Journal of Zoology 74, 721–725.
Sexual dimorphism in wolves (Canis lupus) of the Keewatin District, Northwest Territories, Canada.Crossref | GoogleScholarGoogle Scholar |

Jackson, S., and Groves, C. (2015). ‘Taxonomy of Australian Mammals.’ (CSIRO Publishing: Melbourne.)

Jerison, H. (1973). ‘Evolution of the Brain and Intelligence.’ (Academic Press: New York.)

Johnston, A. M., Turrin, C., Watson, L., and Santos, L. R. (2017). Uncovering the origins of dog–human eye contact: dingoes establish eye contact more than wolves, but less than dogs. Animal Behaviour 133, 123–129.
Uncovering the origins of dog–human eye contact: dingoes establish eye contact more than wolves, but less than dogs.Crossref | GoogleScholarGoogle Scholar |

Jones, E. (1990). Physical characteristics and taxonomic status of wild canids, Canis familiaris, from the Eastern Highlands of Victoria. Wildlife Research 17, 69–81.
Physical characteristics and taxonomic status of wild canids, Canis familiaris, from the Eastern Highlands of Victoria.Crossref | GoogleScholarGoogle Scholar |

Koler–Matznick, J., Brisbin, I. L., Feinstein, M., and Bulmer, S. (2003). An updated description of the New Guinea singing dog (Canis hallstromi, Troughton 1957). Journal of Zoology 261, 109–118.
An updated description of the New Guinea singing dog (Canis hallstromi, Troughton 1957).Crossref | GoogleScholarGoogle Scholar |

Kruska, D. C. (1987). How fast can total brain size change in mammals? Journal für Hirnforschung 28, 59–70.
| 1:STN:280:DyaL2s3lt1WltA%3D%3D&md5=37214e18a76fdd5f6539eba77b0f7c6aCAS |

Kruska, D. C. (1988). Effects of domestication on brain structure and behavior in mammals. Human Evolution 3, 473–485.
Effects of domestication on brain structure and behavior in mammals.Crossref | GoogleScholarGoogle Scholar |

Kruska, D. C. (2005). On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization. Brain, Behavior and Evolution 65, 73–108.
On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization.Crossref | GoogleScholarGoogle Scholar |

Kruska, D. C. (2007). The effects of domestication on brain size. In ‘Evolution of Nervous Systems. Vol. 3’. (Ed. J. H. Kaas.) pp. 143–153. (Elsevier: New York.)

Letnic, M., Ritchie, E. G., and Dickman, C. R. (2012). Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biological Reviews of the Cambridge Philosophical Society 87, 390–413.
Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study.Crossref | GoogleScholarGoogle Scholar |

Lord, K., Feinstein, M., Smith, B., and Coppinger, R. (2013). Variation in reproductive traits of members of the genus Canis with special attention to the domestic dog (Canis familiaris). Behavioural Processes 92, 131–142.
Variation in reproductive traits of members of the genus Canis with special attention to the domestic dog (Canis familiaris).Crossref | GoogleScholarGoogle Scholar |

Macdonald, D. W., and Sillero-Zubiri, C. (2004). ‘The Biology and Conservation of Wild Canids.’ (Oxford University Press: London.)

Manjunath, K. Y. (2002). Estimation of cranial volume – an overview of methodologies. Journal of the Anatomical Society of India 51, 85–91.

Martin, R. D. (1981). Relative brain size and metabolic rate in terrestrial vertebrates. Nature 293, 57–60.
Relative brain size and metabolic rate in terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3ntVOmtA%3D%3D&md5=122783f9745df3e7e1a5fef8cc308ae4CAS |

Newsome, T. M., Ballard, G. A., Crowther, M. S., Dellinger, J. A., Fleming, P. J., Glen, A. S., Greenville, A. C., Johnson, C. N., Letnic, M., and Moseby, K. E. (2015). Resolving the value of the dingo in ecological restoration. Restoration Ecology 23, 201–208.
Resolving the value of the dingo in ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Oskarsson, M. C., Klütsch, C. F., Boonyaprakob, U., Wilton, A., Tanabe, Y., and Savolainen, P. (2012). Mitochondrial DNA data indicate an introduction through mainland southeast Asia for Australian dingoes and Polynesian domestic dogs. Proceedings of the Royal Society B: Biological Sciences 279, 967–974.
Mitochondrial DNA data indicate an introduction through mainland southeast Asia for Australian dingoes and Polynesian domestic dogs.Crossref | GoogleScholarGoogle Scholar |

Pagel, M. D., and Harvey, P. H. (1989). Taxonomic differences in the scaling of brain on body weight among mammals. Science 244, 1589–1593.
Taxonomic differences in the scaling of brain on body weight among mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3pvVeqsw%3D%3D&md5=6f53c38da3e95557da3726bd82842365CAS |

Parr, W. C. H., Wilson, L. A. B., Wroe, S., Colman, N. J., Crowther, M. S., and Letnic, M. (2016). Cranial shape and the modularity of hybridization in dingoes and dogs; hybridization does not spell the end for native morphology. Evolutionary Biology 43, 171–187.
Cranial shape and the modularity of hybridization in dingoes and dogs; hybridization does not spell the end for native morphology.Crossref | GoogleScholarGoogle Scholar |

Price, E. O. (2002). ‘Animal Domestication and Behaviour.’ (CABI Books: New York.)

Röhrs, V. M. (1986). Cephalisation bei Caniden. Journal of Zoological Systematics and Evolutionary Research 24, 300–307.
Cephalisation bei Caniden.Crossref | GoogleScholarGoogle Scholar |

Röhrs, M., and Ebinger, P. (1978). Die Beurteilung von Hirngrößenunterschieden zwischen Wild und Haustieren. Journal of Zoological Systematics and Evolutionary Research 16, 1–14.
Die Beurteilung von Hirngrößenunterschieden zwischen Wild und Haustieren.Crossref | GoogleScholarGoogle Scholar |

Röhrs, M., and Ebinger, P. (1999). Wild is not really wild: brain weight of wild domestic mammals. Berliner und Munchener Tierarztliche Wochenschrift 112, 234–238.

Savolainen, P., Leitner, T., Wilton, A., Matisoo-Smith, E., and Lundeberg, J. (2004). A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 101, 12387–12390.
A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFektbo%3D&md5=a789f526a41e99f0508161f5eec688afCAS |

Schmutz, S. M., Berryere, T. G., Barta, J. L., Reddick, K. D., and Schmutz, J. K. (2007). Agouti sequence polymorphisms in coyotes, wolves and dogs suggest hybridization. The Journal of Heredity 98, 351–355.
Agouti sequence polymorphisms in coyotes, wolves and dogs suggest hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgt7nP&md5=3b0ed137c306979135981316764671c4CAS |

Schultz, W. (1969). Zur Kenntis des Hallstromhunden (Canis hallstromi, Troughton 1957). Zoologischer Anzeiger 183, 47–72.

Smith, B. P. (2014). Living with wild dogs: personality dimensions in captive dingoes (Canis dingo) and implications for ownership. Anthrozoos 27, 423–433.
Living with wild dogs: personality dimensions in captive dingoes (Canis dingo) and implications for ownership.Crossref | GoogleScholarGoogle Scholar |

Smith, B. P. (Ed.) (2015a). ‘The Dingo Debate: Origins, Behaviour and Conservation.’ (CSIRO Publishing: Melbourne.)

Smith, B. P. (2015b). Characteristics of the Australian dingo (Canis dingo Meyer, 1793). In ‘The Dingo Debate: Origins, Behaviour and Conservation’. (Ed. B. Smith.) pp. 1–23. (CSIRO Publishing: Melbourne.)

Smith, B. P. (2015c). Biology and behaviour of the dingo. In ‘The Dingo Debate: Origins, Behaviour and Conservation’. (Ed. B. Smith.) pp. 25–53. (CSIRO Publishing: Melbourne.)

Smith, B. P., and Litchfield, C. A. (2009). A review of the relationship between Indigenous Australians, dingoes (Canis dingo) and domestic dogs (Canis familiaris). Anthrozoos 22, 111–128.
A review of the relationship between Indigenous Australians, dingoes (Canis dingo) and domestic dogs (Canis familiaris).Crossref | GoogleScholarGoogle Scholar |

Smith, B. P., and Litchfield, C. A. (2010a). How well do dingoes (Canis dingo) perform on the detour task. Animal Behaviour 80, 155–162.
How well do dingoes (Canis dingo) perform on the detour task.Crossref | GoogleScholarGoogle Scholar |

Smith, B. P., and Litchfield, C. A. (2010b). Dingoes (Canis dingo) can use human social cues to locate hidden food. Animal Cognition 13, 367–376.
Dingoes (Canis dingo) can use human social cues to locate hidden food.Crossref | GoogleScholarGoogle Scholar |

Smith, B., and Litchfield, C. A. (2013). Looking back at ‘looking back’: operationalizing referential gaze for dingoes in an unsolvable task. Animal Cognition 16, 961–971.
Looking back at ‘looking back’: operationalizing referential gaze for dingoes in an unsolvable task.Crossref | GoogleScholarGoogle Scholar |

Smith, B., and Savolainen, P. (2015). The origin and ancestry of the dingo. In ‘The Dingo Debate: Origins, Behaviour and Conservation’. (Ed. B. Smith.) pp. 55–79. (CSIRO Publishing: Melbourne.)

Smith, B. P., Browne, M., and Serpell, J. A. (2017). Owner-reported behavioural characteristics of dingoes (Canis dingo) living as companion animals: a comparison to ‘modern’ and ‘ancient’ dog breeds. Applied Animal Behaviour Science 187, 77–84.
Owner-reported behavioural characteristics of dingoes (Canis dingo) living as companion animals: a comparison to ‘modern’ and ‘ancient’ dog breeds.Crossref | GoogleScholarGoogle Scholar |

Stephan, H. (1972). Evolution of primate brains: comparative anatomical investigation. In ‘Functional and Evolutionary Biology of Primates’. (Ed. R. Tuttle.) pp. 155–174. (Aldine-Atherton: Chicago.)

Stephens, D., Wilton, A. N., Fleming, P. J. S., and Berry, O. (2015). Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Molecular Ecology 24, 5643–5656.
Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVyitbbN&md5=090adc6c74854d1fcad438707921ab2eCAS |

vonHoldt, B. M., Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon, P., Degenhardt, J. D., Boyko, A. R., Earl, D. A., Auton, A., Reynolds, A., Bryc, K., Brisbin, A., Knowles, J. C., Mosher, D. S., Spady, T. C., Elkahloun, A., Geffen, E., Pilot, M., Jedrzejewski, W., Greco, C., Randi, E., Bannasch, D., Wilton, A., Shearman, J., Musiani, M., Cargill, M., Jones, P. G., Qian, Z., Huang, W., Ding, Z. L., Zhang, Y. P., Bustamante, C. D., Ostrander, E. A., Novembre, J., and Wayne, R. K. (2010). Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902.
Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFSqu70%3D&md5=5c1fd8be3fbefa36622634849838ad69CAS |

vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E., Pilot, M., Jedrzejewski, W., Jedrzejewska, B., Sidorovich, V., Greco, C., Randi, E., Musiani, M., Kays, R., Bustamante, C. D., Ostrander, E. A., Novembre, J., and Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research 21, 1294–1305.
A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFeqs7k%3D&md5=ef981325e06a5b536a924347596b4114CAS |

Wallach, A. D., Izhaki, I., Toms, J. D., Ripple, W. J., and Shanas, U. (2015). What is an apex predator? Oikos 124, 1453–1461.
What is an apex predator?Crossref | GoogleScholarGoogle Scholar |

Wilton, A. N. (2001). DNA methods of assessing dingo purity. In ‘A Symposium on the Dingo’. (Eds C. R. Dickman and D. Lunney.) pp. 49–56. (Royal Zoological Society of New South Wales: Sydney.)

Wilton, A. N., Steward, D. J., and Zafiris, K. (1999). Microsatellite variation in the Australian dingo. The Journal of Heredity 90, 108–111.
Microsatellite variation in the Australian dingo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7kt1CjsQ%3D%3D&md5=8aa6abd7e253a85e8eb3904260be8cacCAS |