Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Extended maternal care and offspring interactions in the subsocial Australian crab spider, Xysticus bimaculatus

Marlis Dumke
+ Author Affiliations
- Author Affiliations

Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany, and Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia. Email: marlisdumke@yahoo.de

Australian Journal of Zoology 64(5) 344-352 https://doi.org/10.1071/ZO16070
Submitted: 5 October 2016  Accepted: 31 January 2017   Published: 27 February 2017

Abstract

Extended maternal care is considered a prerequisite for the evolution of permanent family grouping and eusociality in invertebrates. In spiders, the essential evolutionary transitions to permanent sociality along this ‘subsocial route’ include the extension of care beyond hatching, the persistence of offspring groups to maturation and the elimination of premating dispersal. Subsocial Australian crab spiders (Thomisidae) present a suitable system to identify the selective agents prolonging group cohesion. Particularly, the recent discovery of independently evolved subsociality in the thomisid Xysticus bimaculatus provides new potential for comparative studies to expand the limited understanding of group cohesion beyond the offspring’s potential independence and despite socially exploitative behaviour. Providing fundamental knowledge, the present study investigated maternal care and offspring interactions in X. bimaculatus for the first time. Nest dissections revealed that mothers produce exceptionally small clutches, potentially reflecting a limit in the number of juveniles they can successfully care for. A laboratory experiment demonstrated crucial benefits for offspring in receiving maternal care beyond nutritional independence, mediated by extensive maternal food provisioning. However, prey-sharing also occurred between juveniles irrespective of maternal presence, which marks this species’ predisposition for exploitative feeding behaviour. I therefore suggest X. bimaculatus as a suitable model for investigating the regulation of communal feeding in group-living spiders.


References

Agnarsson, I., Avilés, L., Coddington, J. A., and Maddison, W. P. (2006). Sociality in theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60, 2342–2351.
Sociality in theridiid spiders: repeated origins of an evolutionary dead end.Crossref | GoogleScholarGoogle Scholar |

Avilés, L. (1997). Causes and consequences of cooperation and permanent-sociality in spiders. In ‘The Evolution of Social Behavior in Insects and Arachnids’. (Eds J. C. Choe and B.-J. Crespi.) pp. 476–498. (Cambridge University Press: Cambridge.)

Avilés, L., and Bukowski, T. C. (2006). Group living and inbreeding depression in a subsocial spider. Proceedings of the Royal Society of London, Series B: Biological Sciences 273, 157–163.
Group living and inbreeding depression in a subsocial spider.Crossref | GoogleScholarGoogle Scholar |

Barnard, C. J., and Sibly, R. M. (1981). Producers and scroungers: a general model and its application to captive flocks of house sparrows. Animal Behaviour 29, 543–550.
Producers and scroungers: a general model and its application to captive flocks of house sparrows.Crossref | GoogleScholarGoogle Scholar |

Bilde, T., and Lubin, Y. (2011). Group living in spiders: cooperative breeding and coloniality. In ‘Spider Behaviour Flexibility and Versatility’. (Ed. M. E. Herberstein.) pp. 275–306. (Cambridge University Press: Cambridge.)

Brach, V. (1977). Anelosimus studiosus (Araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders. Evolution 31, 154–161.
Anelosimus studiosus (Araneae: Theridiidae) and the evolution of quasisociality in theridiid spiders.Crossref | GoogleScholarGoogle Scholar |

Brandmayr, P. (1992). Short review of the presocial evolution in Coleoptera. Ethology, Ecology and Evolution 4, 7–16.
Short review of the presocial evolution in Coleoptera.Crossref | GoogleScholarGoogle Scholar |

Burley, N. (1980). Clutch overlap and clutch size: alternative and complementary reproductive tactics. American Naturalist 115, 223–246.
Clutch overlap and clutch size: alternative and complementary reproductive tactics.Crossref | GoogleScholarGoogle Scholar |

Clutton-Brock, T. H. (1991). ‘The Evolution of Parental Care.’ (Princeton University Press: Princeton.)

Crawley, M. J. (Ed.) (2007). Proportion data. In ‘The R Book’. pp. 569–591. (Wiley & Sons: West Sussex.)

Dumke, M., Herberstein, M. E., and Schneider, J. M. (2016). Producers and scroungers: feeding-type composition changes with group size in a socially foraging spider. Proceedings of the Royal Society of London, Series B: Biological Sciences 283, 20160114.
Producers and scroungers: feeding-type composition changes with group size in a socially foraging spider.Crossref | GoogleScholarGoogle Scholar |

Evans, T. A. (1995). Two new species of social crab spiders of the genus Diaea from eastern Australia, their natural history and distribution. Records of the Western Australian Museum 52, 151–158.

Evans, T. A. (1998a). Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society 63, 205–219.
Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae).Crossref | GoogleScholarGoogle Scholar |

Evans, T. A. (1998b). Offspring recognition by mother crab spiders with extreme maternal care. Proceedings of the Royal Society of London, Series B: Biological Sciences 265, 129–134.
Offspring recognition by mother crab spiders with extreme maternal care.Crossref | GoogleScholarGoogle Scholar |

Evans, T. A., and Main, B. Y. (1993). Attraction between social crab spiders: silk pheromones in Diaea socialis. Behavioral Ecology 4, 99–105.
Attraction between social crab spiders: silk pheromones in Diaea socialis.Crossref | GoogleScholarGoogle Scholar |

Evans, T. A., Wallis, E. J., and Elgar, M. A. (1995). Making a meal of mother. Nature 376, 299.
Making a meal of mother.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntF2qu7g%3D&md5=6878f9d6aa971db0e7d779a174f97884CAS |

Giraldeau, L. A., and Caraco, T. (2000). ‘Social Foraging Theory.’ (Princeton University Press: Princeton.)

Gundermann, J.-L., Horel, A., and Roland, C. (1991). Mother–offspring food transfer in Coelotes terrestris (Araneae, Agelenidae). The Journal of Arachnology 19, 97–101.

Heath, D. (Ed.) (2002). Tests for two related samples. In ‘An Introduction to Experimental Design and Statistics for Biology’. pp. 253–257. (CRC Press: New York.)

Ito, C., and Shinkai, A. (1993). Mother–young interactions during the brood-care period in Anelosimus crassipes (Araneae: Theridiidae). Acta Arachnologica 42, 73–81.
Mother–young interactions during the brood-care period in Anelosimus crassipes (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Jantschke, B., and Nentwig, W. (2001). Sub-social behaviour in the diplurid Ischnothele caudata (Araneae, Dipluridae). Bulletin of the British Arachnological Society 12, 12–16.

Kim, K. W., and Horel, A. (1998). Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother–offspring interactions. Ethology 104, 1021–1037.
Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother–offspring interactions.Crossref | GoogleScholarGoogle Scholar |

Kim, K. W., and Roland, C. (2000). Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value. Behavioural Processes 50, 31–42.
Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2sbis1GrsA%3D%3D&md5=8fb22bad2b6cedc75643d0b1d005ea9bCAS |

Kim, K. W., Krafft, B., and Choe, J. C. (2005). Cooperative prey capture by young subsocial spiders. Behavioral Ecology and Sociobiology 59, 92–100.
Cooperative prey capture by young subsocial spiders.Crossref | GoogleScholarGoogle Scholar |

Klug, H., Alonzo, S. H., and Bonsall, M. B. (2012). Theoretical foundations of parental care. In ‘The Evolution of Parental Care’. (Eds N. J. Royle, P. T. Smiseth and M. Kölliker.) pp. 21–38. (Oxford University Press: Oxford.)

Lubin, Y., and Bilde, T. (2007). The evolution of sociality in spiders. Advances in the Study of Behavior 37, 83–145.
The evolution of sociality in spiders.Crossref | GoogleScholarGoogle Scholar |

Main, B. Y. (1988). The biology of a social thomisid spider. In ‘Australian Arachnology’. (Eds A. D. Austin and N. W. Heather.) p. 55–73. (Australian Entomological Society: Brisbane.)

Marques, E. S., Vasconcelos-Netto, J., and de Mello, M. B. (1998). Life history and social behavior of Anelosimus jabaquara and Anelosimus dubiosus (Araneae, Theridiidae). The Journal of Arachnology 26, 227–237.

Marshall, S. D., and Gittleman, J. L. (1994). Clutch size in spiders: is more better? Functional Ecology 8, 118–124.
Clutch size in spiders: is more better?Crossref | GoogleScholarGoogle Scholar |

Nørgaard, E. (1956). Environment and behaviour of Theridion saxatile. Oikos 7, 159–192.
Environment and behaviour of Theridion saxatile.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2015). R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing: Vienna, Austria.) Available at: http://www.R-project.org/

Rienks, J. H. (2000). Extended nest residence and cannibalism in a jumping spider (Araneae, Salticidae). The Journal of Arachnology 28, 123–127.
Extended nest residence and cannibalism in a jumping spider (Araneae, Salticidae).Crossref | GoogleScholarGoogle Scholar |

Rowell, D., and Avilés, L. (1995). Sociality in a bark-dwelling huntsman spider from Australia, Delena cancerides Walckenaer (Araneae: Sparassidae). Insectes Sociaux 42, 287–302.
Sociality in a bark-dwelling huntsman spider from Australia, Delena cancerides Walckenaer (Araneae: Sparassidae).Crossref | GoogleScholarGoogle Scholar |

Royle, N. J., Smiseth, P. T., and Kölliker, M. (2012). ‘The Evolution of Parental Care.’ (Oxford University Press: Oxford.)

Ruch, J., Herberstein, M. E., and Schneider, J. M. (2014a). Families hunt more successfully: effect of group composition on hunting and communal feeding. Animal Behaviour 91, 171–178.
Families hunt more successfully: effect of group composition on hunting and communal feeding.Crossref | GoogleScholarGoogle Scholar |

Ruch, J., Herberstein, M. E., and Schneider, J. M. (2014b). Offspring dynamics affect food provisioning, growth and mortality in a brood-caring spider. Proceedings of the Royal Society of London, Series B: Biological Sciences 281, 20132180.
Offspring dynamics affect food provisioning, growth and mortality in a brood-caring spider.Crossref | GoogleScholarGoogle Scholar |

Ruch, J., Riehl, T., and Michalik, P. (2014c). Re-description of Xysticus bimaculatus L. Koch, 1867 (Araneae, Thomisidae) and characterization of its subsocial lifestyle. ZooKeys 427, 1–19.
Re-description of Xysticus bimaculatus L. Koch, 1867 (Araneae, Thomisidae) and characterization of its subsocial lifestyle.Crossref | GoogleScholarGoogle Scholar |

Ruch, J., Riehl, T., May-Collado, L. J., and Agnarsson, I. (2015). Multiple origins of subsociality in crab spiders (Thomisidae). Molecular Phylogenetics and Evolution 82, 330–340.
Multiple origins of subsociality in crab spiders (Thomisidae).Crossref | GoogleScholarGoogle Scholar |

Ruttan, L. M. (1991). Effects of maternal presence on the growth and survival of subsocial spiderlings (Araneae: Theridiidae). Journal of Insect Behavior 4, 251–256.
Effects of maternal presence on the growth and survival of subsocial spiderlings (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Salomon, M., Schneider, J., and Lubin, Y. (2005). Maternal investment in a spider with suicidal maternal care, Stegodyphus lineatus (Araneae, Eresidae). Oikos 109, 614–622.
Maternal investment in a spider with suicidal maternal care, Stegodyphus lineatus (Araneae, Eresidae).Crossref | GoogleScholarGoogle Scholar |

Schneider, J. M., and Bilde, T. (2008). Benefits of cooperation with genetic kin in a subsocial spider. Proceedings of the National Academy of Sciences of the United States of America 105, 10843–10846.
Benefits of cooperation with genetic kin in a subsocial spider.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOju7k%3D&md5=5711b28e1edc7daeaf0e6d27946ede4bCAS |

Simpson, M. R. (1995). Convariation of spider egg and clutch size: the influence of foraging and parental care. Ecology 76, 795–800.
Convariation of spider egg and clutch size: the influence of foraging and parental care.Crossref | GoogleScholarGoogle Scholar |

Smiseth, P. T., Darwell, C. T., and Moore, A. J. (2003). Partial begging: an empirical model for the early evolution of offspring signalling. Proceedings of the Royal Society of London, Series B: Biological Sciences 270, 1773–1777.
Partial begging: an empirical model for the early evolution of offspring signalling.Crossref | GoogleScholarGoogle Scholar |

Tallamy, D. W. (1984). Insect parental care. Bioscience 34, 20–24.
Insect parental care.Crossref | GoogleScholarGoogle Scholar |

Thiel, M. (1999). Extended parental care in marine amphipods: II. Maternal protection of juveniles from predation. Journal of Experimental Marine Biology and Ecology 234, 235–253.
Extended parental care in marine amphipods: II. Maternal protection of juveniles from predation.Crossref | GoogleScholarGoogle Scholar |

Thiel, M. (Ed.) (2007). Social behaviour of parent–offspring groups in crustaceans. In ‘Evolutionary Ecology of Social and Sexual Systems: Crustaceans as Model Organisms’. pp. 294–318. (Oxford University Press: Oxford.)

Trumbo, S. T. (2012). Patterns of parental care in invertebrates. In ‘The Evolution of Parental Care’. (Eds N. J. Royle, P. T. Smiseth and M. Kölliker.) pp. 81–100. (Oxford University Press: Oxford.)

Unglaub, B., Ruch, J., Herberstein, M., and Schneider, J. (2013). Hunted hunters? Effect of group size on predation risk and growth in the Australian subsocial crab spider Diaea ergandros. Behavioral Ecology and Sociobiology 67, 785–794.
Hunted hunters? Effect of group size on predation risk and growth in the Australian subsocial crab spider Diaea ergandros.Crossref | GoogleScholarGoogle Scholar |

Walter, A., and Bilde, T. (2015). Social recognition in the Arachnida. In ‘Social Recognition in Invertebrates’. (Eds L. Aquiloni and E. Tricarico.) pp. 101–124. (Springer: Cham.)

Whitehouse, M. E., and Lubin, Y. (2005). The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews of the Cambridge Philosophical Society 80, 347–361.
The functions of societies and the evolution of group living: spider societies as a test case.Crossref | GoogleScholarGoogle Scholar |

Wilson, E.O. (1971). ‘The Insect Societies.’ (Harvard University Press: Harvard.)

Yap, L. M., and Li, D. (2009). Social behaviour of spitting spiders (Araneae: Scytodidae) from Singapore. Journal of Zoology 278, 74–81.
Social behaviour of spitting spiders (Araneae: Scytodidae) from Singapore.Crossref | GoogleScholarGoogle Scholar |

Yip, E. C., and Rayor, L. S. (2014). Maternal care and subsocial behaviour in spiders. Biological Reviews of the Cambridge Philosophical Society 89, 427–449.
Maternal care and subsocial behaviour in spiders.Crossref | GoogleScholarGoogle Scholar |

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (Eds) (2009). Generalised estimation equations. In ‘Mixed Effects Models and Extensions in Ecology with R’. pp. 295–342 (Springer: New York.)