Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Stable isotope ecology of the koala (Phascolarctos cinereus)

L. R. G. DeSantis A B and C. Hedberg A
+ Author Affiliations
- Author Affiliations

A Department of Earth and Environmental Sciences, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235-1805, USA.

B Corresponding author. Email: larisa.desantis@vanderbilt.edu

Australian Journal of Zoology 64(5) 353-359 https://doi.org/10.1071/ZO16057
Submitted: 27 August 2016  Accepted: 8 February 2017   Published: 7 March 2017

Abstract

Australia has undergone significant climate change, both today and in the past. Koalas, due to their restricted diet of predominantly eucalyptus leaves and limited drinking behaviour may serve as model organisms for assessing past climate change via stable isotopes of tooth enamel. Here, we assess whether stable carbon and oxygen isotopes from tooth enamel record known climate variables, including proxies of relative aridity (e.g. mean annual precipitation, mean annual maximum temperature, and relative humidity). The results demonstrate significant negative relationships between oxygen isotope values and both relative humidity and mean annual precipitation, proxies for relative aridity. The best model for predicting enamel oxygen isotope values incorporates mean annual precipitation and modelled oxygen isotope values of local precipitation. These data and the absence of any relationship between modelled oxygen isotope precipitation values, independently, suggest that koalas do not track local precipitation values but instead record relative aridity. The lack of significant relationships between carbon isotopes and climate variables suggests that koalas may instead be tracking the density of forests and/or their location in the canopy. Collectively, these data suggest that koalas are model organisms for assessing relative aridity over time – much like kangaroos.

Additional keywords: aridity, climate, diet, marsupial, stable isotopes.


References

Australian Government (2016). Bureau of Meteorology Climate Database. Available at: http://www.bom.gov.au/climate/data/

Ayliffe, L. K., and Chivas, A. R. (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54, 2603–2609.
Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSgsL8%3D&md5=400540023bd951b7c5f5f61a6b295d6cCAS |

Badgley, C., Barry, J. C., Morgan, M. E., Nelson, S. V., Behrensmeyer, A. K., Cerling, T. E., and Pilbeam, D. (2008). Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences of the United States of America 105, 12145–12149.
Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOhtrzI&md5=cc3bae0c066c140f341bff36ff947e2dCAS |

Beck, R. M. (2008). A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. Journal of Mammalogy 89, 175–189.

Black, K. H., Price, G. J., Archer, M., and Hand, S. J. (2014). Bearing up well? Understanding the past, present and future of Australia’s koalas. Gondwana Research 25, 1186–1201.
Bearing up well? Understanding the past, present and future of Australia’s koalas.Crossref | GoogleScholarGoogle Scholar |

Blanshard, W. H. (1990). Growth and development of the koala from birth to weaning. In ‘Biology of the Koala’. (Eds A. Lee, K. Handasyde, and G. D. Sanson.) pp. 193–202. (Surrey Beatty Sydney.)

Blois, J. L., McGuire, J. L., and Hadly, E. A. (2010). Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774.
Small mammal diversity loss in response to late-Pleistocene climatic change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVWnsLg%3D&md5=053aa41c820b693b83fb7c178f2e0d63CAS |

Bowen, G. J. (2016). The online isotopes in precipitation calculator, version 2.2. Available at: http://www.waterisotopes.org

Bowen, G. J., and Revenaugh, J. (2003). Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39, 1299.
Interpolating the isotopic composition of modern meteoric precipitation.Crossref | GoogleScholarGoogle Scholar |

Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158.
Global vegetation change through the Miocene/Pliocene boundary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSktb0%3D&md5=34f2953c7a2351ad246b039f3a08f56cCAS |

Cerling, T. E., Hart, J. A., and Hart, T. B. (2004). Stable isotope ecology in the Ituri forest. Oecologia 138, 5–12.
Stable isotope ecology in the Ituri forest.Crossref | GoogleScholarGoogle Scholar |

Cleugh, H., Stafford Smith, M., Battaglia, M., and Graham, P. (2011). ‘Climate Change: Science and Solutions for Australia.’ (CSIRO Publishing: Melbourne.)

Coplen, T. B. (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure and Applied Chemistry 66, 273–276.
Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislGrsL4%3D&md5=0a11ee46ff5d201fb177a9476b4e8925CAS |

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436–468.
Stable isotopes in precipitation.Crossref | GoogleScholarGoogle Scholar |

Davis, M. B., and Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679.
Range shifts and adaptive responses to Quaternary climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1elsrY%3D&md5=7b08d884ca78396adf3b3438f7ad0469CAS |

Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33, 507–559.
Stable isotopes in plant ecology.Crossref | GoogleScholarGoogle Scholar |

DeSantis, L. R. G. (2011). Stable isotope ecology of extant tapirs from the Americas. Biotropica 43, 746–754.
Stable isotope ecology of extant tapirs from the Americas.Crossref | GoogleScholarGoogle Scholar |

DeSantis, L. R. G., and MacFadden, B. J. (2007). Identifying forested environments in Deep Time using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Courier Forschungsinstitut Senckenberg 258, 147–157.

DeSantis, L. R. G., and Wallace, S. C. (2008). Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 59–68.
Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth.Crossref | GoogleScholarGoogle Scholar |

DeSantis, L. R. G., Feranec, R. S., and MacFadden, B. J. (2009). Effects of global warming on ancient mammalian communities and their environments. PLoS One 4, e5750.
Effects of global warming on ancient mammalian communities and their environments.Crossref | GoogleScholarGoogle Scholar |

DeSantis, L. R. G., Field, J. H., Wroe, S., and Dodson, J. R. (2017). Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change. Paleobiology , .
Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change.Crossref | GoogleScholarGoogle Scholar |

Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299.
C4 photosynthesis, atmospheric CO2, and climate.Crossref | GoogleScholarGoogle Scholar |

Ellis, W. A. H., Melzer, A., Green, B., Newgrain, K., Hindell, M. A., and Carrick, F. N. (1995). Seasonal variation in water flux, field metabolic rate and food consumption of free-ranging koalas (Phascolarctos cinereus). Australian Journal of Zoology 43, 59–68.
Seasonal variation in water flux, field metabolic rate and food consumption of free-ranging koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar |

Epstein, S., Thompson, P., and Yapp, C. J. (1977). Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198, 1209–1215.
Oxygen and hydrogen isotopic ratios in plant cellulose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslKltw%3D%3D&md5=4d403e4aab06e4cfc8750f3ce69a0b26CAS |

Farquhar, G. D., and Lloyd, J. (1993). Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. Stable Isotopes and Plant Carbon–Water Relations 40, 47–70.
Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere.Crossref | GoogleScholarGoogle Scholar |

Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40, 503–537.
Carbon isotope discrimination and photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlKmu70%3D&md5=c85831fab0d11bfb58cb102aa788fbbeCAS |

Feranec, R. S., and MacFadden, B. J. (2000). Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 155–169.
Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Friedman, I., and O’Neil, J. R. (1977). Data of geochemistry: compilation of stable isotope fractionation factors of geochemical interest. US Government Printing Office Vol. 440.

Gordon, G., Brown, A. S., and Pulsford, T. (1988). A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in south-western Queensland. Australian Journal of Ecology 13, 451–461.
A koala (Phascolarctos cinereus Goldfuss) population crash during drought and heatwave conditions in south-western Queensland.Crossref | GoogleScholarGoogle Scholar |

Graham, R. W., and Lundelius, E. L. (1996). Spatial response of mammals to late Quaternary environmental fluctuations. Science 272, 1601–1606.
Spatial response of mammals to late Quaternary environmental fluctuations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1ejtbw%3D&md5=ac8b800738b2cd2f9c589f44429297b0CAS |

Hedberg, C., and DeSantis, L. R. G. (2017). Dental microwear texture analysis of extant koalas: clarifying causal agents of microwear. Journal of Zoology , .
Dental microwear texture analysis of extant koalas: clarifying causal agents of microwear.Crossref | GoogleScholarGoogle Scholar |

Higgins, P., and MacFadden, B. J. (2004). ‘Amount Effect’ recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 337–353.
‘Amount Effect’ recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States.Crossref | GoogleScholarGoogle Scholar |

Huertas, A. D., Iacumin, P., Stenni, B., Chillón, B. S., and Longinelli, A. (1995). Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59, 4299–4305.
Oxygen isotope variations of phosphate in mammalian bone and tooth enamel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFCrt7c%3D&md5=82cf39885b43c4520bda940c924c210eCAS |

Hume, I. D., and Esson, C. (1993). Nutrients, antinutrients and leaf selection by captive koalas (Phascolarctos cinereus). Australian Journal of Zoology 41, 379–392.
Nutrients, antinutrients and leaf selection by captive koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar |

Koch, P. L., Tuross, N., and Fogel, M. L. (1997). The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–429.
The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite.Crossref | GoogleScholarGoogle Scholar |

Kohn, M. J. (1996). Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, 4811–4829.
Predicting animal δ18O: accounting for diet and physiological adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlKktA%3D%3D&md5=ecf3fcf2a9626a224a6b19d81de9c4acCAS |

Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences of the United States of America 103, 11201–11205.
A stable isotope aridity index for terrestrial environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVCmtrw%3D&md5=a76721d38095b61ce85b17bf553fe16fCAS |

Lunney, D., Crowther, M. S., Wallis, I., Foley, W. J., Lemon, J., Wheeler, R., Madani, G., Orscheg, C., Griffith, J. E., Krockenberger, M., and Retamales, M. (2012). Koalas and climate change: a case study on the Liverpool Plains, north-west New South Wales. In ‘Wildlife and Climate Change: Towards Robust Conservation Strategies for Australian Fauna’. (Eds D. Lunney and P. Hutchings.) pp. 150–168. (Royal Zoological Society of New South Wales: Sydney.)

Luz, B., Cormie, A. B., and Schwarcz, H. P. (1990). Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54, 1723–1728.
Oxygen isotope variations in phosphate of deer bones.Crossref | GoogleScholarGoogle Scholar |

Martin, R. W., and Handasyde, K. A. (1999). ‘The Koala: Natural History, Conservation and Management.’ (UNSW Press: Hong Kong.)

Medina, E., and Minchin, P. (1980). Stratification of δ13C values of leaves in Amazonian rain forests. Oecologia 45, 377–378.
Stratification of δ13C values of leaves in Amazonian rain forests.Crossref | GoogleScholarGoogle Scholar |

Moore, B. D., and Foley, W. J. (2000). A review of feeding and diet selection in koalas (Phascolarctos cinereus). Australian Journal of Zoology 48, 317–333.
A review of feeding and diet selection in koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar |

Murphy, B. P., Bowman, D. M., and Gagan, M. K. (2007). The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology 21, 757–766.
The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos.Crossref | GoogleScholarGoogle Scholar |

Pahl, L. I., and Hume, I. D. (1990). Preferences for Eucalyptus species of the New England tablelands and initial development of an artificial diet for koalas. In ‘Biology of the Koala’. (Eds A. Lee, K. Hanadasyde, and G. Sanson.) pp. 123–128. (Surrey Beatty: Sydney.)

Price, G. J. (2012). Long-term trends in lineage ‘health’ of the Australian koala (Mammalia: Phascolarctidae): using paleo-diversity to prioritize species for conservation. In ‘Paleontology in Ecology and Conservation’. (Ed. J. C. Louys.) pp. 171–192. (Springer: Berlin.)

Price, G. J., and Hocknull, S. A. (2011). Invictokoala monticola gen. et sp. nov. (Phascolarctidae, Marsupialia), a Pleistocene plesiomorphic koala holdover from Oligocene ancestors. Journal of Systematic Palaeontology 9, 327–335.
Invictokoala monticola gen. et sp. nov. (Phascolarctidae, Marsupialia), a Pleistocene plesiomorphic koala holdover from Oligocene ancestors.Crossref | GoogleScholarGoogle Scholar |

Prideaux, G. J., Long, J. A., Ayliffe, L. K., Hellstrom, J. C., Pillans, B., Boles, W. E., Hutchinson, M. N., Roberts, R. G., Cupper, M. L., Arnold, L. J., and Devine, P. D. (2007). An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 445, 422–425.
An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12msg%3D%3D&md5=27653f287113a8d9403b572883880aecCAS |

Prideaux, G. J., Ayliffe, L. K., DeSantis, L. R. G., Schubert, B. W., Murray, P. F., Gagan, M. K., and Cerling, T. E. (2009). Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proceedings of the National Academy of Sciences of the United States of America 106, 11646–11650.
Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSqtbs%3D&md5=263078915bcc41baeb89410a8cb85fd1CAS |

Schulze, E. D., Nicolle, D., Börner, A., Lauerer, M., Aas, G., and Schulze, I. (2014). Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125–1135.
Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlylsLc%3D&md5=881dd3d3370046151c480653cf7c4ae0CAS |

Secord, R., Bloch, J. I., Chester, S. G., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A., and Krigbaum, J. (2012). Evolution of the earliest horses driven by climate change in the Paleocene–Eocene Thermal Maximum. Science 335, 959–962.
Evolution of the earliest horses driven by climate change in the Paleocene–Eocene Thermal Maximum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFarsLg%3D&md5=3b63515788627a1480b89eb28d47ac30CAS |

van der Merwe, N. J., and Medina, E. (1989). Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53, 1091–1094.
Photosynthesis and 13C/12C ratios in Amazonian rain forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltVSlt74%3D&md5=6f6dd271cb902602ccce114365a0c56bCAS |

van der Merwe, N. J., and Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18, 249–259.
The canopy effect, carbon isotope ratios and foodwebs in Amazonia.Crossref | GoogleScholarGoogle Scholar |

Wang, Y., and Cerling, T. E. (1994). A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 281–289.
A model of fossil tooth and bone diagenesis: implications for paleodiet reconstruction from stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Yann, L. T., DeSantis, L. R. G., Haupt, R. J., Romer, J. L., Corapi, S. E., and Ettenson, D. J. (2013). The application of an oxygen isotope aridity index to terrestrial paleoenvironmental reconstructions in Pleistocene North America. Paleobiology 39, 576–590.
The application of an oxygen isotope aridity index to terrestrial paleoenvironmental reconstructions in Pleistocene North America.Crossref | GoogleScholarGoogle Scholar |