Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Morphology and histology of the uropygial gland in Antarctic birds: relationship with their contact with the aquatic environment?

María Cecilia Chiale A B , Patricia E. Fernández C , Eduardo J. Gimeno B C , Claudio Barbeito B C D and Diego Montalti A B E
+ Author Affiliations
- Author Affiliations

A División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA-La Plata, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ-Buenos Aires, Argentina.

C Cátedra de Patología General, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 and 118, B1900-La Plata, Argentina.

D Cátedra de Histología y Embriología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 and 118, B1900-La Plata, Argentina.

E Corresponding author. Email: dmontalti@fcnym.unlp.edu.ar

Australian Journal of Zoology 62(2) 157-165 https://doi.org/10.1071/ZO13103
Submitted: 23 May 2013  Accepted: 18 March 2014   Published: 28 April 2014

Abstract

The uropygial gland is morphologically different in diverse bird species. This gland was macroscopically and microscopically examined in penguins, storm petrels and skuas. In all the studied species, the gland showed a connective tissue capsule and one papilla. A negative relationship was observed between the relative glandular mass and the body mass, being highest in petrels (small glands) and lowest in penguins (large glands). Birds that spend much time in water (penguins) have gland characteristics related to a continuous, but not stored, secretion, such as straight adenomers, the presence of abundant elastic fibres in the connective tissue and the absence of a primary storage chamber. Instead, birds that have less contact with water (storm petrels) have a gland with much more tortuous adenomers and a small primary storage chamber. The secretory cells showed a positive PAS reaction in all the glandular zones. Therefore, no differences could be seen between the sebaceous and glucogenic zones, as proposed in other birds. These results allow the conclusion that, in aquatic birds, there is no connection between the relative mass of the uropygial gland and the time in contact with water, though the differences found in the histological structure could be related to a different contact with the aquatic environment.

Additional keywords: avian gland, preen gland, seabird.


References

Acosta Hospitaleche, C., Montalti, D., and Marti, L. J. (2009). Skeletal morphoanatomy of the brown skua Stercorarius antarcticus lonnbergi and the south polar skua Stercorarius maccormicki. Polar Biology 32, 759–774.
Skeletal morphoanatomy of the brown skua Stercorarius antarcticus lonnbergi and the south polar skua Stercorarius maccormicki.Crossref | GoogleScholarGoogle Scholar |

Bandyopadhyay, A., and Bhattacharyya, S. P. (1996). Influence of fowl gland and its secretory lipid components on the growth of skin surface bacteria of fowl. Indian Journal of Experimental Biology 34, 48–52.
| 1:CAS:528:DyaK28XotVeisw%3D%3D&md5=2ef59973bc917e4b93f02bf887f90fa5CAS | 8698407PubMed |

Bandyopadhyay, A., and Bhattacharyya, S. P. (1999). Influence of fowl gland and its secretory components on the growth of skin surface fungi of fowl. Indian Journal of Experimental Biology 37, 1218–1222.
| 1:CAS:528:DC%2BD3cXjsVWhtQ%3D%3D&md5=de31ecc5a354cf69c7ed62b18c62ed03CAS | 10865889PubMed |

Bhattacharyya, S. P. (1972). A compartive study on the histology and histochemistry of glands. La Cellule 69, 113–126.

Bo, N. A. (1953). Observaciones sobre la glándula uropigia del biguá Phalacrocorax brasilianus brasilianus (Gmelin). Ciencia e Investigacion 9, 521–524.

Bride, J. (1975). Etude ultraestructurale de la morphogénése et de la différenciation de la glande uropygienne de canard (Anas platyrhynchos) Zoologie, Physiologie et Biologie Animale 12, 13–71.

Elder, W. H. (1954). The oil gland of birds. The Wilson Bulletin 66, 6–31.

Furnes, R. W. (1996). Family Stercorariidae (skuas). In ‘Handbook of the Birds of the World. Vol. 3’. del (Eds J. Hoyo, A. Elliot and J. Sargatal.). pp. 556–571. (Lynx Edicions: Barcelona.)

Galván, I., Barba, E., Piculo, R., Cantó, J. L., Cortés, V., Monrós, J. S., Atiénzar, F., and Proctor, H. (2008). Feather mites and birds: an interaction mediated by uropygial gland size? Journal of Evolutionary Biology 21, 133–145.
| 18028353PubMed |

Graña Grilli, M., and Montalti, D. (2012). Trophic interactions between brown and south polar skuas at Deception Island, Antarctica. Polar Biology 35, 299–304.
Trophic interactions between brown and south polar skuas at Deception Island, Antarctica.Crossref | GoogleScholarGoogle Scholar |

Gutiérrez, A. M., Montalti, D., Reboredo, G. R., Salibián, A., and Catalá, A. (1998). Lindane distribution and fatty acid profile of gland and liver of Columba livia after pesticide treatment. Pesticide Biochemistry and Physiology 59, 137–141.
Lindane distribution and fatty acid profile of gland and liver of Columba livia after pesticide treatment.Crossref | GoogleScholarGoogle Scholar |

Harem, I. S., Kocak-Harem, M., Turan-Kozlu, T., Akaydin-Bozkurt, Y., Karadag-Sari, E., and Altunay, H. (2010). Histologic structure of the gland of the osprey (Pandion haliaetus). Journal of Zoo and Wildlife Medicine 41, 148–151.
Histologic structure of the gland of the osprey (Pandion haliaetus).Crossref | GoogleScholarGoogle Scholar | 20722270PubMed |

Hsu, W. S. (1936). Further cytological observations on the glands of birds. Cell and Tissue Research 24, 248–255.

Jacob, J., and Ziswiler, V. (1982). The uropygial gland. In ‘Avian Biology’. (Eds D. S. Farner, J. R. King, and K. C. Parkes.) pp. 199–324. (Academic Press: New York.)

Johnston, D. W. (1988). A morphological atlas of the avian gland. Bulletin of the British Museum of Natural History (Zoology) 54, 199–259.

Kamiya, S., Izumisawa, Y., Tsukushi, M., Amasaki, H., and Daigo, M. (1986). Histochemical studies on polysaccharides in the gland of ducks. Bulletin Nippon Veterinary Zootechnical College 35, 1–7.
| 1:CAS:528:DyaL2sXkvFert7o%3D&md5=fafef48b6511b8d644f92bbec68767e7CAS |

Kozlu, T., Akaydin Bozkurt, Y., and Ates, S. (2011). A macroanatomical and histological study of the gland in the white stork (Ciconia cicionia). International Journal of Morphology 29, 723–726.
A macroanatomical and histological study of the gland in the white stork (Ciconia cicionia).Crossref | GoogleScholarGoogle Scholar |

Lucas, A. M., and Stettenheim, P. R. (1972). Uropygial gland. In ‘Avian Anatomy’. pp. 613–626. Agricultural Handbook, US Department of Agriculture. (US Government Printing Office: Washington, DC.)

Menon, G. K., Aggarwal, S. K., and Lucas, A. M. (1981). Evidence for the holocrine nature of lipoid secretion by avian epidermal cells: a histochemical and fine structural study of rictus and the gland. Journal of Morphology 167, 185–199.
Evidence for the holocrine nature of lipoid secretion by avian epidermal cells: a histochemical and fine structural study of rictus and the gland.Crossref | GoogleScholarGoogle Scholar |

Meyer, W., Seegers, U., Herrmann, J., and Schnapper, A. (2003). Further aspects of the general antimicrobial properties of pinniped skin secretions. Diseases of Aquatic Organisms 53, 177–179.
Further aspects of the general antimicrobial properties of pinniped skin secretions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7jsFGqug%3D%3D&md5=723dc99503d512c883deb06fdaab9052CAS | 12650250PubMed |

Møller, A. P., Erritzøe, J., and Nielsen, J. T. (2010). Predators and microorganisms of prey: goshawks prefer prey with small glands. Functional Ecology 24, 608–613.
Predators and microorganisms of prey: goshawks prefer prey with small glands.Crossref | GoogleScholarGoogle Scholar |

Montalti, D., and Salibián, A. (2000). Gland size and avian habitat. Ornitologia Neotropical 110, 297–306.

Montalti, D., Gutiérrez, A. M., and Salibián, A. (1998). Técnica quirúrgica para la ablación de la glándula uropigia en la paloma casera Columba livia. Revista Brasileira de Biologia 58, 193–196.

Montalti, D., Quiroga, A., Massone, A., Idiart, J. R., and Salibián, A. (2001). Histochemical and lectinhistochemical studies on the gland of rock dove Columba livia. Brazilian Journal of Morphological Science 18, 33–39.

Montalti, D., Gutiérrez, A. M., Reboredo, G. R., and Salibián, A. (2005). The chemical composition of the gland secretion of rock dove. Comparative Biochemistry and Physiology 140, 275–279.
The chemical composition of the gland secretion of rock dove.Crossref | GoogleScholarGoogle Scholar | 15792592PubMed |

Montalti, D., Gutiérrez, A. M., Reboredo, G. R., and Salibián, A. (2006). Removal urogygial gland does not affect serum lipids, cholesterol and calcium levels in the rock pigeon Columba livia. Acta Biologica Hungarica 57, 295–300.
| 1:STN:280:DC%2BD28nhs1agsA%3D%3D&md5=64c15bd33cb8bc7ee4e37d510e957231CAS | 17048693PubMed |

Moyer, B. R., Rock, A. N., and Clayton, D. H. (2003). Experimental test of the importance of preen oil in rock doves (Columba livia). The Auk 120, 490–496.
Experimental test of the importance of preen oil in rock doves (Columba livia).Crossref | GoogleScholarGoogle Scholar |

Reneerkens, J., Piersma, T., and Sinninghe Damsté, J. S. (2002). Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proceedings of the Royal Society B: Biological Sciences 269, 2135–2139.
Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why?Crossref | GoogleScholarGoogle Scholar | 12396488PubMed |

Sadoon, A. H. (2011). Histological study of European starling gland (Sturnus vulgaris). International Journal of Poultry Science 10, 662–664.
Histological study of European starling gland (Sturnus vulgaris).Crossref | GoogleScholarGoogle Scholar |

Salibián, A., and Montalti, D. (2009). Physiological and biochemical aspects of the avian gland. Brazilian Journal of Biology 69, 437–446.
Physiological and biochemical aspects of the avian gland.Crossref | GoogleScholarGoogle Scholar |

Sandilands, V., Savory, J., and Powell, K. (2004). Preen gland function in layer fowls: affecting morphology and feather lipid levels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 137, 217–225.
Preen gland function in layer fowls: affecting morphology and feather lipid levels.Crossref | GoogleScholarGoogle Scholar |

Sawad, A. A. (2006). Morphological and histological study of gland in moorhen (G. gallinula c. choropus). International Journal of Poultry Science 50, 938–941.

Soler, J. J., Peralta-Sánchez, J. M., Martin-Platero, A. M., Martin-vivaldi, M., Martínez-Bueno, M., and Møller, A. P. (2012). The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. Journal of Evolutionary Biology , .
The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds.Crossref | GoogleScholarGoogle Scholar | 22805098PubMed |

Suzuki, T. (1994). Ultrastructural studies on the glands of quail. Japanese Poultry Science 31, 38–44.
Ultrastructural studies on the glands of quail.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVSlsrs%3D&md5=32be419280abb922e1d1dc7ab72f2fdbCAS |

Vincze, O., Vágási, C. I., Kovács, I., Galván, I., and Pap, P. L. (2013). Sources of variation in uropygial gland size in European birds. Biological Journal of the Linnean Society 110, 543–563.
Sources of variation in uropygial gland size in European birds.Crossref | GoogleScholarGoogle Scholar |

Warham, J. (1990). ‘The Petrels: Their Ecology and Breeding Systems.’ (Academic Press: London.)

Williams, T. D. (1995). ‘The Penguins.’ (Oxford University Press: New York.)